PD Dr. Frank Hettlich
- Gruppe: Arbeitsgruppe Inverse Probleme
- Sprechstunden: Montags 10:30 - 12:00 Uhr oder nach Vereinbarung
- Raum: 1.042
CS 20.30 - Tel.: +49 721 608-42048
- frank hettlich ∂does-not-exist.kit edu
Kollegiengebäude Mathematik (20.30)
Englerstraße 2
D-76131 Karlsruhe
Hinweise für Studierende in den Bachelorstudiengängen Technomathematik und Computational and Data Sciences
Aktuelles
Der Studiengang Technomathematik (TeMa) läuft aus. Letzte Möglichkeit der Immatrikulation in das erste Fachsemester ist im Wintersemester 2025/2026.
Der Studiengang CDS-Master startet voraussichtlich zum Wintersemester 2026/2027
Allgemeine Hinweise
- CDS-Seite
- TeMa-Seite
- Allg. Info zu den math. Studiengängen
- Modulhandbücher und Prüfungsordnungen für die Mathematikstudiengänge
- Formulare zu Anerkennungs- bzw. Zulassungsanträgen
- Zugangssatzung für den Master Technomathematik
Fachstudienberatung
- Bachelor Computational and Data Science und Bachelor Technomathematik: PD Dr. Frank Hettlich
- Zu weiteren mathematischen Studiengängen
Lehrmaterial zur Mathematik
- The Mathematical Theory of Time-Harmonic Maxwell's Equations, Expansion-, Integral-, and Variational Methods
- Grundwissen Mathematikstudium, Analysis, und Lineare Algebra mit Querverbindungen Lehrbuch zum ersten Studienjahr in Mathematik
- Grundwissen Mathematikstudium, Höhere Analysis, Numerik und Stochastik Lehrbuch zum Mathematikstudium im zweiten und dritten Studienjahr
- Lehrbuch Mathematik - Ein umfassendes Lehrbuch für Technische- und Naturwissenschaftliche Studiengänge
- Vorkurs Mathematik Mathematikkurs vor dem Start in ein natur- oder ingenieurwissenschaftliches Studium (mit Hinweisen zum Skript, Lösungen zu den Aufgaben und Selbsttests)
Publikationen
Bücher / Lehrbücher
- T. Arens, F. Hettlich, Ch. Karpfinger, U. Kockelkorn, K. Lichtenegger, H. Stachel: Lehrbuch Mathematik ; Springer-Spektrum, 5. Aufl. 2022
- M. Brokate, N. Henze, F. Hettlich, A. Meister, G. Schranz-Kirlinger, Th. Sonar: Grundwissen Mathematikstudium - Höhere Mathematik, Numerik und Stochastik ; Springer-Spektrum, 2015
- A. Kirsch, F. Hettlich: The Mathematical Theory of Time-Harmonic Maxwell's Equations; Expansion-, Integral-, and Variational Methods ; Springer, 2015
- T. Arens, R. Busam, F. Hettlich, Ch. Karpfinger, H. Stachel: Grundwissen Mathematikstudium - Analysis und Lineare Algebra mit Querverbindungen ; Springer-Spektrum, 2013
- F. Hettlich: Skriptum Vorkurs Mathematik , Shaker-Verlag, 3rd edition, 2019
Preprints
- On potential-based shape derivatives of the elctromagnetic tranmission problem. CRC Preprint 2022/75, Karlsruhe Institute of Technology, 2022, https://doi.org/10.5445/IR/1000154080 .
Veröffentlichungen (referierte Zeitschriften)
- The domain derivative in inverse obstacle scattering with nonlinear impedance boundary condition (with L. Fink), Inverse Problems, 40 (2024), https://doi.org/10.1088/1361-6420/ad0c92 .
- The domain derivative for semilinear elliptic inverse obstacle problems, Inverse Problems & Imaging, 16 (2022), https://doi.org/10.3934/ipi.2021071.
- Application of the second domain derivative in inverse electromagnetic scattering (with F. Hagemann), Inverse Problems, 36 (2020), https://doi.org/10.1088/1361-6420/abaa31 .
- Solving inverse electromagnetic scattering problems via domain derivatives (with T. Arens, T. Betcke, F. Hagemann), Inverse Problems, 35 (2019), https://dx.doi.org/10.1088/1361-6420/ab10cb .
- The Definition and Measurement of Electromagnetic Chirality (with T.Arens, F.Hagemann and A.Kirsch), Mathematical Methods in the Applied Sciences (2018), http://dx.doi.org/10.1002/mma.4628 .
- The domain derivative of time-harmonic electromagnetic waves at interfaces, Math. Methods Appl Sci 35 (2012), 1681-1689.
- Reconstruction of periodic gratings from one scattered wave, Journal of Mathematics and Computers in Simulation 66 (2004), 315-324.
- Vibration Parameter Extraction from Endoscopic Image Series of the Vocal folds, IEEE Transaction on Biomedical Engineering 49 (2002), 773-781, (with M. Doellinger, U. Hoppe, S. Schuberth and U. Eysholdt)
- Iterative Regularization Schemes in Inverse Scattering by Periodic Structures, Inverse Problems 18 (2002), 701-714
- Identification of a Discontinous Source in the Heat Equation, Inverse Problems 17 (2001), 1465-1482 (with W. Rundell)
- A Second Degree Method for Nonlinear Inverse Problems, SIAM J. Numer. Anal. 37 (2000), 587-620 (with W. Rundell)
- The Landweber Iteration Applied to Inverse Conductive Scattering Porblems, Inverse Problems 14 (1998), 931-947.
- The Determination of a Discontinuity in a Conductivity from a Single Boundary Measurement, Inverse Problems 14 (1998), 67-82 (with W. Rundell)
- Recovery of the Support of a Source Term in an Elliptic Differential Equation, Inverse Problems 13 (1997), 959-976 (with W. Rundell)
- Schiffer's Theorem in Inverse Scattering Theory for Periodic Structures, Inverse Problems 13 (1997), 351-361 (with A. Kirsch)
- Iterative Methods for the Reconstruction of an Inverse Potential Problem, Inverse Problems 12 (1996), 251-266 (with W. Rundell).
- Uniqueness of the Inverse Conductive Scattering Problem for Time-Harmonic Electromagnetic Waves, SIAM J. Appl. Math. 56 (1996), 588-601.
- Frechet Derivatives in Inverse Obstacle Scattering, Inverse Problems 11 (1995), 371-382.
- Two Methods for Solving an Inverse Conductive Scattering Problem, Inverse Problems 10 (1994), 375-385.
- On the Uniqueness of the Inverse Conductive Scattering Problem for the Helmholtz Equation, Inverse Problems 10 (1994), 129-144.
- The Resistive and Conductive Problems for the Exterior Helmholtz Equation, SIAM J. Appl. Math. 50 (1990), 1607-1622 (with T.S. Angell and R.E. Kleinman)