Publikationsliste
2025
A non-iterative domain decomposition time integrator for linear wave equations
Buchholz, T.; Hochbruck, M.
2025. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000183505
Buchholz, T.; Hochbruck, M.
2025. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000183505
Time-integration of Gaussian variational approximation for the magnetic Schrödinger equation
Scheifinger, M.; Busch, K.; Hochbruck, M.; Lasser, C.
2025. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000181084
Scheifinger, M.; Busch, K.; Hochbruck, M.; Lasser, C.
2025. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000181084
Local time-integration for Friedrich’s systems
Hochbruck, M.; Scheifinger, M.
2025. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000179811
Hochbruck, M.; Scheifinger, M.
2025. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000179811
2024
Error analysis of DGTD for linear Maxwell equations with inhomogeneous interface conditions
Dörich, B.; Dörner, J.; Hochbruck, M.
2024. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000173144
Dörich, B.; Dörner, J.; Hochbruck, M.
2024. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000173144
Variational Gaussian approximation for the magnetic Schrödinger equation *
Burkhard, S.; Dörich, B.; Hochbruck, M.; Lasser, C.
2024. Journal of Physics A: Mathematical and Theoretical, 57 (29), 295202. doi:10.1088/1751-8121/ad591e
Burkhard, S.; Dörich, B.; Hochbruck, M.; Lasser, C.
2024. Journal of Physics A: Mathematical and Theoretical, 57 (29), 295202. doi:10.1088/1751-8121/ad591e
Error analysis of an implicit-explicit time discretization scheme for semilinear wave equations with application to multiscale problems
Eckhardt, D.; Hochbruck, M.; Verfürth, B.
2024. Karlsruher Institut für Technologie (KIT). doi:10.48550/arXiv.2406.09889
Eckhardt, D.; Hochbruck, M.; Verfürth, B.
2024. Karlsruher Institut für Technologie (KIT). doi:10.48550/arXiv.2406.09889
Error analysis of second-order local time integration methods for discontinuous Galerkin discretizations of linear wave equations
Carle, C.; Hochbruck, M.
2024. Mathematics of Computation, 93 (350), 2611 – 2641. doi:10.1090/mcom/3952
Carle, C.; Hochbruck, M.
2024. Mathematics of Computation, 93 (350), 2611 – 2641. doi:10.1090/mcom/3952
2023
Variational Gaussian approximation for the magnetic Schrödinger equation
Burkhard, S.; Dörich, B.; Hochbruck, M.; Lasser, C.
2023. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000154431/v2
Burkhard, S.; Dörich, B.; Hochbruck, M.; Lasser, C.
2023. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000154431/v2
Dynamical low-rank integrators for second-order matrix differential equations
Hochbruck, M.; Neher, M.; Schrammer, S.
2023. BIT Numerical Mathematics, 63 (1), Art.-Nr.: 4. doi:10.1007/s10543-023-00941-7
Hochbruck, M.; Neher, M.; Schrammer, S.
2023. BIT Numerical Mathematics, 63 (1), Art.-Nr.: 4. doi:10.1007/s10543-023-00941-7
Rank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equations
Hochbruck, M.; Neher, M.; Schrammer, S.
2023. BIT Numerical Mathematics, 63 (1), Art.-Nr.: 9. doi:10.1007/s10543-023-00942-6
Hochbruck, M.; Neher, M.; Schrammer, S.
2023. BIT Numerical Mathematics, 63 (1), Art.-Nr.: 9. doi:10.1007/s10543-023-00942-6
Error analysis of second-order locally implicit and local time-stepping methods for discontinuous Galerkin discretizations of linear wave equations
Carle, C.; Hochbruck, M.
2023. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000154254
Carle, C.; Hochbruck, M.
2023. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000154254
2022
Error Analysis of Multirate Leapfrog-Type Methods for Second-Order Semilinear Odes
Carle, C.; Hochbruck, M.
2022. SIAM Journal on Numerical Analysis, 60 (5), 2897–2924. doi:10.1137/21M1427255
Carle, C.; Hochbruck, M.
2022. SIAM Journal on Numerical Analysis, 60 (5), 2897–2924. doi:10.1137/21M1427255
Error analysis for space discretizations of quasilinear wave-type equations
Hochbruck, M.; Maier, B.
2022. IMA Journal of Numerical Analysis, 42 (3), 1963–1990. doi:10.1093/imanum/drab073
Hochbruck, M.; Maier, B.
2022. IMA Journal of Numerical Analysis, 42 (3), 1963–1990. doi:10.1093/imanum/drab073
Exponential Integrators for Quasilinear Wave-Type Equations
Dörich, B.; Hochbruck, M.
2022. SIAM Journal on Numerical Analysis, 60 (3), 1472–1493. doi:10.1137/21M1410579
Dörich, B.; Hochbruck, M.
2022. SIAM Journal on Numerical Analysis, 60 (3), 1472–1493. doi:10.1137/21M1410579
Preconditioned implicit time integration schemes for Maxwell’s equations on locally refined grids
Hochbruck, M.; Köhler, J.; Kumbhar, P. M.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000148078
Hochbruck, M.; Köhler, J.; Kumbhar, P. M.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000148078
Rank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equations
Hochbruck, M.; Neher, M.; Schrammer, S.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000143198
Hochbruck, M.; Neher, M.; Schrammer, S.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000143198
Dynamical low-rank integrators for second-order matrix differential equations
Hochbruck, M.; Neher, M.; Schrammer, S.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000143003
Hochbruck, M.; Neher, M.; Schrammer, S.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000143003
Error analysis of a fully discrete discontinuous Galerkin alternating direction implicit discretization of a class of linear wave-type problems
Hochbruck, M.; Köhler, J.
2022. Numerische Mathematik, 150 (3), 893–927. doi:10.1007/s00211-021-01262-z
Hochbruck, M.; Köhler, J.
2022. Numerische Mathematik, 150 (3), 893–927. doi:10.1007/s00211-021-01262-z
2021
Error analysis of multirate leapfrog-type methods for second-order semilinear ODEs
Carle, C.; Hochbruck, M.
2021. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000133957
Carle, C.; Hochbruck, M.
2021. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000133957
On averaged exponential integrators for semilinear wave equations with solutions of low-regularity
Buchholz, S.; Dörich, B.; Hochbruck, M.
2021. SN Partial Differential Equations and Applications, 2 (2), Art.-Nr.: 23. doi:10.1007/s42985-020-00045-9
Buchholz, S.; Dörich, B.; Hochbruck, M.
2021. SN Partial Differential Equations and Applications, 2 (2), Art.-Nr.: 23. doi:10.1007/s42985-020-00045-9
An implicit–explicit time discretization scheme for second-order semilinear wave equations with application to dynamic boundary conditions
Hochbruck, M.; Leibold, J.
2021. Numerische Mathematik, 147 (4), 869–899. doi:10.1007/s00211-021-01184-w
Hochbruck, M.; Leibold, J.
2021. Numerische Mathematik, 147 (4), 869–899. doi:10.1007/s00211-021-01184-w
Correction to: An implicit–explicit time discretization scheme for second-order semilinear wave equations with application to dynamic boundary conditions
Hochbruck, M.; Leibold, J.
2021. Numerische Mathematik, 147 (4), Art. Nr.: 901. doi:10.1007/s00211-021-01190-y
Hochbruck, M.; Leibold, J.
2021. Numerische Mathematik, 147 (4), Art. Nr.: 901. doi:10.1007/s00211-021-01190-y
Exponential integrators for quasilinear wave-type equations
Dörich, B.; Hochbruck, M.
2021. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000131210
Dörich, B.; Hochbruck, M.
2021. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000131210
Error analysis for space discretizations of quasilinear wave-type equations
Hochbruck, M.; Maier, B.
2021. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000128952
Hochbruck, M.; Maier, B.
2021. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000128952
2020
Error analysis of a fully discrete discontinuous Galerkin alternating direction implicit discretization of a class of linear wave-type problems
Hochbruck, M.; Köhler, J.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000127911
Hochbruck, M.; Köhler, J.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000127911
An implicit-explicit time discretization scheme for second-order semilinear wave equations with application to dynamic boundary conditions
Hochbruck, M.; Leibold, J.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000122353
Hochbruck, M.; Leibold, J.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000122353
On the convergence of Lawson methods for semilinear stiff problems
Hochbruck, M.; Leibold, J.; Ostermann, A.
2020. Numerische Mathematik, 145 (3), 553–580. doi:10.1007/s00211-020-01120-4
Hochbruck, M.; Leibold, J.; Ostermann, A.
2020. Numerische Mathematik, 145 (3), 553–580. doi:10.1007/s00211-020-01120-4
On Leapfrog-Chebyshev Schemes
Carle, C.; Hochbruck, M.; Sturm, A.
2020. SIAM journal on numerical analysis, 58 (4), 2404–2433. doi:10.1137/18M1209453
Carle, C.; Hochbruck, M.; Sturm, A.
2020. SIAM journal on numerical analysis, 58 (4), 2404–2433. doi:10.1137/18M1209453
Finite element discretization of semilinear acoustic wave equations with kinetic boundary conditions
Hochbruck, M.; Leibold, J.
2020. Electronic transactions on numerical analysis, 53, 522–540. doi:10.1553/ETNA_VOL53S522
Hochbruck, M.; Leibold, J.
2020. Electronic transactions on numerical analysis, 53, 522–540. doi:10.1553/ETNA_VOL53S522
On averaged exponential integrators for semilinear wave equations with solutions of low-regularity
Buchholz, S.; Dörich, B.; Hochbruck, M.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000117802
Buchholz, S.; Dörich, B.; Hochbruck, M.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000117802
2019
Unified error analysis for nonconforming space discretizations of wave-type equations
Hipp, D.; Hochbruck, M.; Stohrer, C.
2019. IMA journal of numerical analysis, 39 (3), 1206–1245. doi:10.1093/imanum/dry036
Hipp, D.; Hochbruck, M.; Stohrer, C.
2019. IMA journal of numerical analysis, 39 (3), 1206–1245. doi:10.1093/imanum/dry036
Heterogeneous Multiscale Method for Maxwell’s Equations
Hochbruck, M.; Maier, B.; Stohrer, C.
2019. Multiscale modeling & simulation, 17 (4), 1147–1171. doi:10.1137/18M1234072
Hochbruck, M.; Maier, B.; Stohrer, C.
2019. Multiscale modeling & simulation, 17 (4), 1147–1171. doi:10.1137/18M1234072
Finite element discretization of semilinear acoustic wave : equations with kinetic boundary conditions
Hochbruck, M.; Leibold, J.
2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000105549
Hochbruck, M.; Leibold, J.
2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000105549
On the convergence of Lawson methods for semilinear stiff problems
Hochbruck, M.; Leibold, J.; Ostermann, A.
2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000099482
Hochbruck, M.; Leibold, J.; Ostermann, A.
2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000099482
On leapfrog-Chebyshev schemes
Carle, C.; Hochbruck, M.; Sturm, A.
2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000099118
Carle, C.; Hochbruck, M.; Sturm, A.
2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000099118
Error analysis of discontinuous Galerkin discretizations of a class of linear wave-type problems
Hochbruck, M.; Köhler, J.
2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000098066
Hochbruck, M.; Köhler, J.
2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000098066
Analytical and numerical analysis of linear and nonlinear properties of an rf-SQUID based metasurface
Müller, M. M.; Maier, B.; Rockstuhl, C.; Hochbruck, M.
2019. Physical review / B, 99 (7), Art.-Nr.: 075401. doi:10.1103/PhysRevB.99.075401
Müller, M. M.; Maier, B.; Rockstuhl, C.; Hochbruck, M.
2019. Physical review / B, 99 (7), Art.-Nr.: 075401. doi:10.1103/PhysRevB.99.075401
On the efficiency of the Peaceman–Rachford ADI-dG method for wave-type problems
Hochbruck, M.; Köhler, J.
2019. European Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2017; Voss; Norway; 25 September 2017 through 29 September 2017. Ed.: F.A. Radu, 135–144, Springer. doi:10.1007/978-3-319-96415-7_10
Hochbruck, M.; Köhler, J.
2019. European Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2017; Voss; Norway; 25 September 2017 through 29 September 2017. Ed.: F.A. Radu, 135–144, Springer. doi:10.1007/978-3-319-96415-7_10
2018
Upwind discontinuous Galerkin space discretization and locally implicit time integration for linear Maxwell’s equations
Hochbruck, M.; Sturm, A.
2018. Mathematics of computation, 88 (317), 1121–1153. doi:10.1090/MCOM/3365
Hochbruck, M.; Sturm, A.
2018. Mathematics of computation, 88 (317), 1121–1153. doi:10.1090/MCOM/3365
Error analysis of implicit Runge–Kutta methods for quasilinear hyperbolic evolution equations
Hochbruck, M.; Pažur, T.; Schnaubelt, R.
2018. Numerische Mathematik, 138 (3), 557–579. doi:10.1007/s00211-017-0914-6
Hochbruck, M.; Pažur, T.; Schnaubelt, R.
2018. Numerische Mathematik, 138 (3), 557–579. doi:10.1007/s00211-017-0914-6
Heterogeneous multiscale method for Maxwell’s equations
Hochbruck, M.; Maier, B.; Stohrer, C.
2018. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000088934
Hochbruck, M.; Maier, B.; Stohrer, C.
2018. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000088934
Analytical and numerical analysis of linear and nonlinear properties of an rf-SQUID based metasurface
Müller, M. M.; Maier, B.; Rockstuhl, C.; Hochbruck, M.
2018. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000088565
Müller, M. M.; Maier, B.; Rockstuhl, C.; Hochbruck, M.
2018. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000088565
On leap-frog-Chebyshev schemes
Hochbruck, M.; Sturm, A.
2018. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000085527
Hochbruck, M.; Sturm, A.
2018. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000085527
Closing the gap between trigonometric integrators and splitting methods for highly oscillatory differential equations
Buchholz, S.; Gauckler, L.; Grimm, V.; Hochbruck, M.; Jahnke, T.
2018. IMA journal of numerical analysis, 38 (1), 57–74. doi:10.1093/imanum/drx007
Buchholz, S.; Gauckler, L.; Grimm, V.; Hochbruck, M.; Jahnke, T.
2018. IMA journal of numerical analysis, 38 (1), 57–74. doi:10.1093/imanum/drx007
2017
Error analysis of implicit Euler methods for quasilinear hyperbolic evolution equations
Hochbruck, M.; Pažur, T.
2017. Numerische Mathematik, 135 (2), 547–569. doi:10.1007/s00211-016-0810-5
Hochbruck, M.; Pažur, T.
2017. Numerische Mathematik, 135 (2), 547–569. doi:10.1007/s00211-016-0810-5
Error analysis of non-conforming FE methods for wave-type problems and its application to heterogeneous multiscale methods
Hipp, D.; Hochbruck, M.; Stohrer, C.
2017. ICTCA 2017 Vienna : 13th International Conference on Theoretical and Computational Acoustics : book of abstracts : 30. Juli-03. August 2017. Ed.: P. Borejko, 130, TU
Hipp, D.; Hochbruck, M.; Stohrer, C.
2017. ICTCA 2017 Vienna : 13th International Conference on Theoretical and Computational Acoustics : book of abstracts : 30. Juli-03. August 2017. Ed.: P. Borejko, 130, TU
On the efficiency of the Peaceman-Rachford ADI-dG method forwave-type methods
Hochbruck, M.; Köhler, J.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000078144
Hochbruck, M.; Köhler, J.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000078144
Finite Element Heterogeneous Multiscale Method for Time-Dependent Maxwell’s Equations
Hochbruck, M.; Stohrer, C.
2017. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 : Selected Papers from the ICOSAHOM conference, Rio de Janeiro, Brazil, 27th June - 1st July , 2016. Ed.: M. L. Bittencourt, 269–281, Springer. doi:10.1007/978-3-319-65870-4_18
Hochbruck, M.; Stohrer, C.
2017. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 : Selected Papers from the ICOSAHOM conference, Rio de Janeiro, Brazil, 27th June - 1st July , 2016. Ed.: M. L. Bittencourt, 269–281, Springer. doi:10.1007/978-3-319-65870-4_18
Unified error analysis for non-conforming space discretizations ofwave-type equations
Hipp, D.; Hochbruck, M.; Stohrer, C.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000076637
Hipp, D.; Hochbruck, M.; Stohrer, C.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000076637
Upwind discontinuous Galerkin space discretization and locally implicit time integration for linear Maxwell’s equations
Hochbruck, M.; Sturm, A.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000070153
Hochbruck, M.; Sturm, A.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000070153
On the convergence of Lawson methods for semilinear stiff problems
Hochbruck, M.; Ostermann, A.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000068916
Hochbruck, M.; Ostermann, A.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000068916
Error analysis of implicit Runge-Kutta methods for quasilinear hyperbolic evolution equations
Hochbruck, M.; Pažur, T.; Schnaubelt, R.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000067352
Hochbruck, M.; Pažur, T.; Schnaubelt, R.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000067352
Upwind discontinuous Galerkin space discretization and locally implicit time integration for linear Maxwell’s equations
Hochbruck, M.; Sturm, A.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000067269
Hochbruck, M.; Sturm, A.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000067269
A fast mollified impulse method for biomolecular atomistic simulations
Fath, L.; Hochbruck, M.; Singh, C. V.
2017. Journal of computational physics, 333, 180–198. doi:10.1016/j.jcp.2016.12.024
Fath, L.; Hochbruck, M.; Singh, C. V.
2017. Journal of computational physics, 333, 180–198. doi:10.1016/j.jcp.2016.12.024
2016
Error Analysis of a Second-Order Locally Implicit Method for Linear Maxwell’s Equations
Hochbruck, M.; Sturm, A.
2016. SIAM journal on numerical analysis, 54 (5), 3167–3191. doi:10.1137/15M1038037
Hochbruck, M.; Sturm, A.
2016. SIAM journal on numerical analysis, 54 (5), 3167–3191. doi:10.1137/15M1038037
Finite element heterogeneous multiscale method for time-dependent Maxwell’s equation
Hochbruck, M.; Stohrer, C.
2016. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000060075
Hochbruck, M.; Stohrer, C.
2016. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000060075
Convergence of viscoelastic constraints to nonholonomic idealization
Deppler, J.; Braun, B.; Fidlin, A. Y.; Hochbruck, M.
2016. European Journal of Mechanics / A: Solids, 58, 140–147. doi:10.1016/j.euromechsol.2016.01.003
Deppler, J.; Braun, B.; Fidlin, A. Y.; Hochbruck, M.
2016. European Journal of Mechanics / A: Solids, 58, 140–147. doi:10.1016/j.euromechsol.2016.01.003
Error analysis of implicit Euler methods for quasilinear hyperbolic evolution systems
Hochbruck, M.; Pažur, T.
2016. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000053752
Hochbruck, M.; Pažur, T.
2016. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000053752
2015
Error analysis of a second order locally implicit method for linear Maxwell’s equations
Hochbruck, M.; Sturm, A.
2015. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000049414
Hochbruck, M.; Sturm, A.
2015. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000049414
Efficient time integration for discontinuous Galerkin approximations of linear wave equations
Hochbruck, M.; Pazur, T.; Schulz, A.; Thawinan, E.; Wieners, C.
2015. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 95 (3), 237–259. doi:10.1002/zamm.201300306
Hochbruck, M.; Pazur, T.; Schulz, A.; Thawinan, E.; Wieners, C.
2015. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 95 (3), 237–259. doi:10.1002/zamm.201300306
Implicit Runge-Kutta methods and discontinuous Galerkin discretizations for linear Maxwell’s equations
Hochbruck, M.; Pazur, T.
2015. SIAM journal on numerical analysis, 53 (1), 485–507. doi:10.1137/130944114
Hochbruck, M.; Pazur, T.
2015. SIAM journal on numerical analysis, 53 (1), 485–507. doi:10.1137/130944114
Efficient multiple time-stepping algorithms of higher order
Demirel, A.; Niegemann, J.; Busch, K.; Hochbruck, M.
2015. Journal of Computational Physics, 285, 133–148. doi:10.1016/j.jcp.2015.01.018
Demirel, A.; Niegemann, J.; Busch, K.; Hochbruck, M.
2015. Journal of Computational Physics, 285, 133–148. doi:10.1016/j.jcp.2015.01.018
2014
A preconditioned Krylov method for an exponential integrator for non-autonomous parabolic systems
Hipp, D.; Hochbruck, M.
2014. Oberwolfach reports, 11, 822–824
Hipp, D.; Hochbruck, M.
2014. Oberwolfach reports, 11, 822–824
An exponential integrator for non-autonomous parabolic problems
Hipp, D.; Hochbruck, M.; Ostermann, A.
2014. Electronic transactions on numerical analysis, 41, 497–511
Hipp, D.; Hochbruck, M.; Ostermann, A.
2014. Electronic transactions on numerical analysis, 41, 497–511
Convergence of an ADI splitting for Maxwell’s equations
Hochbruck, M.; Jahnke, T.; Schnaubelt, R.
2014. Numerische Mathematik, 129 (3), 535–561. doi:10.1007/s00211-014-0642-0
Hochbruck, M.; Jahnke, T.; Schnaubelt, R.
2014. Numerische Mathematik, 129 (3), 535–561. doi:10.1007/s00211-014-0642-0
2013
Residual, restarting and Richardson iteration for the matrix exponential
Botchev, M. A.; Grimm, V.; Hochbruck, M.
2013. SIAM Journal on Scientific Computing, 35 (3), A1376-A1397. doi:10.1137/110820191
Botchev, M. A.; Grimm, V.; Hochbruck, M.
2013. SIAM Journal on Scientific Computing, 35 (3), A1376-A1397. doi:10.1137/110820191
2012
Residual, Restarting and Richardson Iteration for the Matrix Exponential
Botchev, M. A.; Grimm, V.; Hochbruck, M.
2012. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000031191
Botchev, M. A.; Grimm, V.; Hochbruck, M.
2012. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000031191
2011
Exponential multistep methods of Adams-type
Hochbruck, M.; Ostermann, A.
2011. BIT Numerical Mathematics, 51 (4), 889–908. doi:10.1007/s10543-011-0332-6
Hochbruck, M.; Ostermann, A.
2011. BIT Numerical Mathematics, 51 (4), 889–908. doi:10.1007/s10543-011-0332-6
2010
Three-dimensional relativistic particle-in-cell hybrid code based on an exponential integrator
Tückmantel, T.; Pukhov, A.; Liljo, J.; Hochbruck, M.
2010. IEEE Transactions on Plasma Science, 38 (9), 2383–2389. doi:10.1109/TPS.2010.2056706
Tückmantel, T.; Pukhov, A.; Liljo, J.; Hochbruck, M.
2010. IEEE Transactions on Plasma Science, 38 (9), 2383–2389. doi:10.1109/TPS.2010.2056706
On the convergence of a regularizing Levenberg-Marquardt scheme for nonlinear ill-posed problems
Hochbruck, M.; Hoenig, M.
2010. Numerische Mathematik, 115 (1), 71–79. doi:10.1007/s00211-009-0268-9
Hochbruck, M.; Hoenig, M.
2010. Numerische Mathematik, 115 (1), 71–79. doi:10.1007/s00211-009-0268-9
A multilevel Jacobi-Davidson method for polynomial PDE eigenvalue problems arising in plasma physics
Hochbruck, M.; Löchel, D.
2010. SIAM Journal on Scientific Computing, 32 (6), 3151–3169. doi:10.1137/090774604
Hochbruck, M.; Löchel, D.
2010. SIAM Journal on Scientific Computing, 32 (6), 3151–3169. doi:10.1137/090774604
Exponential integrators
Hochbruck, M.; Ostermann, A.
2010. Acta numerica, 19 (May), 209–286. doi:10.1017/S0962492910000048
Hochbruck, M.; Ostermann, A.
2010. Acta numerica, 19 (May), 209–286. doi:10.1017/S0962492910000048
2009
Exponential Rosenbrock-type methods
Hochbruck, M.; Ostermann, A.; Schweitzer, J.
2009. SIAM Journal on Numerical Analysis, 47 (1), 786–803. doi:10.1137/080717717
Hochbruck, M.; Ostermann, A.; Schweitzer, J.
2009. SIAM Journal on Numerical Analysis, 47 (1), 786–803. doi:10.1137/080717717
Regularization of nonlinear ill-posed problems by exponential integrators
Hochbruck, M.; Hönig, M.; Ostermann, A.
2009. ESAIM: Mathematical Modelling and Numerical Analysis, 43 (4), 709–720. doi:10.1051/m2an/2009021
Hochbruck, M.; Hönig, M.; Ostermann, A.
2009. ESAIM: Mathematical Modelling and Numerical Analysis, 43 (4), 709–720. doi:10.1051/m2an/2009021
A convergence analysis of the exponential Euler iteration for nonlinear ill-posed problems
Hochbruck, M.; Hönig, M.; Ostermann, A.
2009. Inverse Problems, 25 (7), 075009. doi:10.1088/0266-5611/25/7/075009
Hochbruck, M.; Hönig, M.; Ostermann, A.
2009. Inverse Problems, 25 (7), 075009. doi:10.1088/0266-5611/25/7/075009
Effect of poloidal inhomogeneity in plasma parameters on edge anomalous transport
Löchel, D.; Tokar, M.; Hochbruck, M.; Reiser, D.
2009. Physics of Plasmas, 16 (4), 044508. doi:10.1063/1.3121222
Löchel, D.; Tokar, M.; Hochbruck, M.; Reiser, D.
2009. Physics of Plasmas, 16 (4), 044508. doi:10.1063/1.3121222
2008
One dimensional electromagnetic relativistic PIC-hydrodynamic hybrid simulation code H-VLPL (Hybrid Virtual Laser Plasma Lab)
Liljo, J.; Karmakar, A.; Pukhov, A.; Hochbruck, M.
2008. Computer Physics Communication, 179 (6), 371–379. doi:10.1016/j.cpc.2008.03.008
Liljo, J.; Karmakar, A.; Pukhov, A.; Hochbruck, M.
2008. Computer Physics Communication, 179 (6), 371–379. doi:10.1016/j.cpc.2008.03.008
A parallel implementation of a two-dimensional fluid laser-plasma integrator for stratified plasma-vacuum systems
Karle, C.; Schweitzer, J.; Hochbruck, M.; Spatschek, K. H.
2008. Journal of Computational Physics, 227 (16), 7701–7719. doi:10.1016/j.jcp.2008.04.024
Karle, C.; Schweitzer, J.; Hochbruck, M.; Spatschek, K. H.
2008. Journal of Computational Physics, 227 (16), 7701–7719. doi:10.1016/j.jcp.2008.04.024
Approximation of matrix operators applied to multiple vectors
Hochbruck, M.; Niehoff, J.
2008. Mathematics and Computers in Simulation, 79 (4), 1270–1283. doi:10.1016/j.matcom.2008.03.016
Hochbruck, M.; Niehoff, J.
2008. Mathematics and Computers in Simulation, 79 (4), 1270–1283. doi:10.1016/j.matcom.2008.03.016
Rational approximation to trigonometric operators
Grimm, V.; Hochbruck, M.
2008. BIT Numerical Mathematics, 48 (2), 215–229. doi:10.1007/s10543-008-0185-9
Grimm, V.; Hochbruck, M.
2008. BIT Numerical Mathematics, 48 (2), 215–229. doi:10.1007/s10543-008-0185-9
2006
Preconditioning Lanczos approximations to the matrix exponential
Eshof, J. van den; Hochbruck, M.
2006. SIAM Journal on Scientific Computing, 27 (4), 1438–1457. doi:10.1137/040605461
Eshof, J. van den; Hochbruck, M.
2006. SIAM Journal on Scientific Computing, 27 (4), 1438–1457. doi:10.1137/040605461
Exponential integrators of Rosenbrock-type
Hochbruck, M.; Ostermann, A.; Schweitzer, J.
2006. Differential-Algebraic Equations. Hrsg.: S.L. Campbell, 1107–1110, Oberwolfach
Hochbruck, M.; Ostermann, A.; Schweitzer, J.
2006. Differential-Algebraic Equations. Hrsg.: S.L. Campbell, 1107–1110, Oberwolfach
Numerical solution of nonlinear wave equations in stratified dispersive media
Karle, C.; Schweitzer, J.; Hochbruck, M.; Laedke, E. W.; Spatschek, K. H.
2006. Journal of Computational Physics, 216 (1), 138–152. doi:10.1016/j.jcp.2005.11.024
Karle, C.; Schweitzer, J.; Hochbruck, M.; Laedke, E. W.; Spatschek, K. H.
2006. Journal of Computational Physics, 216 (1), 138–152. doi:10.1016/j.jcp.2005.11.024
Error analysis of exponential integrators for oscillatory second-order differential equations
Hochbruck, M.; Grimm, V.
2006. Journal of Physics A: Mathematical and General, 39, 5495–5507. doi:10.1088/0305-4470/39/19/S10
Hochbruck, M.; Grimm, V.
2006. Journal of Physics A: Mathematical and General, 39, 5495–5507. doi:10.1088/0305-4470/39/19/S10
Exponential integrators for highly oscillatory differential equations
Grimm, V.; Hochbruck, M.
2006. Oberwolfach Reports, 3 (1), 868–869
Grimm, V.; Hochbruck, M.
2006. Oberwolfach Reports, 3 (1), 868–869
2005
Exponential Runge-Kutta methods for parabolic problems
Hochbruck, M.; Ostermann, A.
2005. Applied Numerical Mathematics, 53 (2-4), 323–339. doi:10.1016/j.apnum.2004.08.005
Hochbruck, M.; Ostermann, A.
2005. Applied Numerical Mathematics, 53 (2-4), 323–339. doi:10.1016/j.apnum.2004.08.005
Explicit exponential Runge-Kutta methods for semilinear parabolic problems
Hochbruck, M.; Ostermann, A.
2005. SIAM Journal on Numerical Analysis, 43 (3), 1069–1090. doi:10.1137/040611434
Hochbruck, M.; Ostermann, A.
2005. SIAM Journal on Numerical Analysis, 43 (3), 1069–1090. doi:10.1137/040611434
2003
On Magnus integrators for time-dependent Schrödinger equations
Hochbruck, M.; Lubich, C.
2003. SIAM Journal on Numerical Analysis, 41 (3), 945–963. doi:10.1137/S0036142902403875
Hochbruck, M.; Lubich, C.
2003. SIAM Journal on Numerical Analysis, 41 (3), 945–963. doi:10.1137/S0036142902403875
2002
Mathematik fürs Leben am Beispiel der Computertomographie
Hochbruck, M.; Sautter, J.-M.
2002. Mathematische Semesterberichte, 49 (1), 95–113. doi:10.1007/s005910200042
Hochbruck, M.; Sautter, J.-M.
2002. Mathematische Semesterberichte, 49 (1), 95–113. doi:10.1007/s005910200042
1999
A bunch of time integrators for quantum/classical molecular dynamics
Hochbruck, M.; Lubich, C.
1999. Algorithms for Macromolecular Modelling : challenges, methods, ideas; proceedings of the 2nd International Symposium on Algorithms for Macromolecular Modelling, Berlin, May 21 - 24, 1997. Ed.: P. Deuflhard, 421–432, Springer-Verlag. doi:10.1007/978-3-642-58360-5_24
Hochbruck, M.; Lubich, C.
1999. Algorithms for Macromolecular Modelling : challenges, methods, ideas; proceedings of the 2nd International Symposium on Algorithms for Macromolecular Modelling, Berlin, May 21 - 24, 1997. Ed.: P. Deuflhard, 421–432, Springer-Verlag. doi:10.1007/978-3-642-58360-5_24
Exponential integrators for quantum-classical molecular dynamics
Hochbruck, M.; Lubich, C.
1999. BIT Numerical Mathematics, 39 (4), 620–645. doi:10.1023/A:1022335122807
Hochbruck, M.; Lubich, C.
1999. BIT Numerical Mathematics, 39 (4), 620–645. doi:10.1023/A:1022335122807
A Gautschi-type method for oscillatory second-order differential equations
Hochbruck, M.; Lubich, C.
1999. Numerische Mathematik, 83 (3), 403–426. doi:10.1007/s002110050456
Hochbruck, M.; Lubich, C.
1999. Numerische Mathematik, 83 (3), 403–426. doi:10.1007/s002110050456
1998
A numerical comparison of look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems
Hochbruck, M.
1998. High performance algorithms for structured matrix problems. Ed.: P. Arbenz, 127–148, Nova Science
Hochbruck, M.
1998. High performance algorithms for structured matrix problems. Ed.: P. Arbenz, 127–148, Nova Science
Exponential integrators for large systems of differential equations
Hochbruck, M.; Lubich, C.; Selhofer, H.
1998. SIAM Journal on Scientific Computing, 19 (5), 1552–1574. doi:10.1137/S1064827595295337
Hochbruck, M.; Lubich, C.; Selhofer, H.
1998. SIAM Journal on Scientific Computing, 19 (5), 1552–1574. doi:10.1137/S1064827595295337
Error analysis of Krylov methods in a nutshell
Hochbruck, M.; Lubich, C.
1998. SIAM Journal on Scientific Computing, 19 (2), 695–701. doi:10.1137/S1064827595290450
Hochbruck, M.; Lubich, C.
1998. SIAM Journal on Scientific Computing, 19 (2), 695–701. doi:10.1137/S1064827595290450
1997
Further optimized look-ahead recurrences for adjacent rows in the Padé table and Toeplitz matrix factorizations
Hochbruck, M.
1997. Journal of Computational and Applied Mathematics, 86 (1), 219–236. doi:10.1016/S0377-0427(97)00157-X
Hochbruck, M.
1997. Journal of Computational and Applied Mathematics, 86 (1), 219–236. doi:10.1016/S0377-0427(97)00157-X
On Krylov subspace approximations to the matrix exponential operator
Hochbruck, M.; Lubich, C.
1997. SIAM Journal on Numerical Analysis, 34 (5), 1911–1925. doi:10.1137/S0036142995280572
Hochbruck, M.; Lubich, C.
1997. SIAM Journal on Numerical Analysis, 34 (5), 1911–1925. doi:10.1137/S0036142995280572
1996
Optimized look-ahead recurrences for adjacent rows in the Padé table
Gutknecht, M. H.; Hochbruck, M.
1996. BIT Numerical Mathematics, 36 (2), 264–286. doi:10.1007/BF01731983
Gutknecht, M. H.; Hochbruck, M.
1996. BIT Numerical Mathematics, 36 (2), 264–286. doi:10.1007/BF01731983
A note on conjugate-gradient type methods for indefinite and/or inconsistent linear systems
Fischer, B.; Hanke, M.; Hochbruck, M.
1996. Numer. algorithms 11 (1996) S. 181-187
Fischer, B.; Hanke, M.; Hochbruck, M.
1996. Numer. algorithms 11 (1996) S. 181-187
1995
Preconditioned Krylov subspace methods for Lyapunov matrix equations
Starke, G.; Hochbruck, M.
1995. SIAM j. on matrix anal. and appl. 16 (1995) S. 156-171
Starke, G.; Hochbruck, M.
1995. SIAM j. on matrix anal. and appl. 16 (1995) S. 156-171
1993
A Chebyshev-like semiiteration for inconsistent linear systems
Hanke, M.; Hochbruck, M.
1993. Electron. trans. on numer. anal. 1 (1993) S. 89-103
Hanke, M.; Hochbruck, M.
1993. Electron. trans. on numer. anal. 1 (1993) S. 89-103
1992
Experiments with Krylov subspace methods on a massively parallel computer
Hanke, M.; Hochbruck, M.; Niethammer, W.
1992. Zuerich 1992. (IPS research report. No. 92-16.)
Hanke, M.; Hochbruck, M.; Niethammer, W.
1992. Zuerich 1992. (IPS research report. No. 92-16.)
1991
A biconjugate gradient type algorithm on massively parallel architectures
Freund, R. W.; Hochbruck, M.
1991. In: Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics, Dublin 1991
Freund, R. W.; Hochbruck, M.
1991. In: Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics, Dublin 1991
On the use of two QMR algorithms for solving singular systems and applications in Markov chain modeling
Freund, R. W.; Hochbruck, M.
1991. Palo Alto, Cal. 1991. (RIACS Technical report. 91.25.)
Freund, R. W.; Hochbruck, M.
1991. Palo Alto, Cal. 1991. (RIACS Technical report. 91.25.)