Prof. Dr. Andreas Rieder
- Room: 3.040
CS 20.30 - Phone: +49 721 608-42678
- andreas rieder ∂does-not-exist.kit edu
- ORCID
Kollegiengebäude Mathematik (20.30)
Englerstraße 2
D-76131 Karlsruhe
Publikationsliste
An all-at-once solver for visco-acoustic full waveform inversion in the time-domain
Rheinbay, C.; Rieder, A.
2025. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000182886
Rheinbay, C.; Rieder, A.
2025. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000182886
The Numerical Scheme of Approximate Inverse for 2D Linear Seismic Imaging. PhD dissertation
Ganster, K.
2025, June 10. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000182156
Ganster, K.
2025, June 10. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000182156
On the mathematical foundation of full waveform inversion in viscoelastic vertically transverse isotropic media *
Rieder, A.
2025. Inverse Problems, 41 (5), 055009. doi:10.1088/1361-6420/adcfc0
Rieder, A.
2025. Inverse Problems, 41 (5), 055009. doi:10.1088/1361-6420/adcfc0
On the mathematical foundation of full waveform inversion in viscoelastic vertically transverse isotropic media (revised)
Rieder, A.
2025. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000181267
Rieder, A.
2025. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000181267
In memoriam Alfred K Louis
Hahn, B.; Maass, P.; Rieder, A.; Schuster, T.
2025. Inverse Problems, 41 (2), 020201. doi:10.1088/1361-6420/ad9cb6
Hahn, B.; Maass, P.; Rieder, A.; Schuster, T.
2025. Inverse Problems, 41 (2), 020201. doi:10.1088/1361-6420/ad9cb6
On the mathematical foundation of full waveform inversion in viscoelastic vertically transverse isotropic media
Rieder, A.
2024. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000176962
Rieder, A.
2024. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000176962
A microlocal and visual comparison of 2D Kirchhoff migration formulas in seismic imaging
Ganster, K.; Todd Quinto, E.; Rieder, A.
2024. Inverse Problems, 40 (11), 115001. doi:10.1088/1361-6420/ad797b
Ganster, K.; Todd Quinto, E.; Rieder, A.
2024. Inverse Problems, 40 (11), 115001. doi:10.1088/1361-6420/ad797b
Tangential Cone Condition for the Full Waveform Forward Operator in the Viscoelastic Regime: The Nonlocal Case
Eller, M.; Griesmaier, R.; Rieder, A.
2024. SIAM Journal on Applied Mathematics, 84 (2), 412–432. doi:10.1137/23M1551845
Eller, M.; Griesmaier, R.; Rieder, A.
2024. SIAM Journal on Applied Mathematics, 84 (2), 412–432. doi:10.1137/23M1551845
A microlocal and visual comparison of 2D Kirchhoff migration formulas in seismic imaging
Ganster, K.; Quinto, E. T.; Rieder, A.
2024. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000170104
Ganster, K.; Quinto, E. T.; Rieder, A.
2024. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000170104
All-At-Once and Reduced Solvers for Visco-Acoustic Full Waveform Inversion. PhD dissertation
Rheinbay, C. C.
2024, January 24. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000167623
Rheinbay, C. C.
2024, January 24. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000167623
Seismic imaging with generalized Radon transforms: stability of the Bolker condition
Kunstmann, P. C.; Quinto, E. T.; Rieder, A.
2023. Pure and Applied Mathematics Quarterly, 19 (4), 1985–2036. doi:10.4310/pamq.2023.v19.n4.a11
Kunstmann, P. C.; Quinto, E. T.; Rieder, A.
2023. Pure and Applied Mathematics Quarterly, 19 (4), 1985–2036. doi:10.4310/pamq.2023.v19.n4.a11
Multiparameter 2-D viscoelastic full-waveform inversion of Rayleigh waves: a field experiment at Krauthausen test site
Gao, L.; Pan, Y.; Rieder, A.; Bohlen, T.; Mao, W.
2023. Geophysical Journal International, 234 (1), 297–312. doi:10.1093/gji/ggad072
Gao, L.; Pan, Y.; Rieder, A.; Bohlen, T.; Mao, W.
2023. Geophysical Journal International, 234 (1), 297–312. doi:10.1093/gji/ggad072
Approximate Inversion of a Class of Generalized Radon Transforms
Ganster, K.; Rieder, A.
2023. SIAM Journal on Imaging Sciences, 16 (2), 842–866. doi:10.1137/22M1512417
Ganster, K.; Rieder, A.
2023. SIAM Journal on Imaging Sciences, 16 (2), 842–866. doi:10.1137/22M1512417
On the iterative regularization of non-linear illposed problems in
Pieronek, L.; Rieder, A.
2023. Numerische Mathematik, 154 (1-2), 209–247. doi:10.1007/s00211-023-01359-7
Pieronek, L.; Rieder, A.
2023. Numerische Mathematik, 154 (1-2), 209–247. doi:10.1007/s00211-023-01359-7
Inexact Newton regularizations with uniformly convex stability terms: a unified convergence analysis
Margotti, F.; Pauleti, M.; Rieder, A.
2023. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000157900
Margotti, F.; Pauleti, M.; Rieder, A.
2023. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000157900
Tangential cone condition for the full waveform forward operator in the viscoelastic regime: the non-local case
Eller, M.; Griesmaier, R.; Rieder, A.
2023. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000155827
Eller, M.; Griesmaier, R.; Rieder, A.
2023. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000155827
Tangential cone condition for the full waveform forward operator in the elastic regime: the non-local case
Eller, M.; Griesmaier, R.; Rieder, A.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000150845
Eller, M.; Griesmaier, R.; Rieder, A.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000150845
Approximate inversion of generalized Radon transforms
Ganster, K.; Rieder, A.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000149179
Ganster, K.; Rieder, A.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000149179
High-resolution characterization of shallow aquifer by 2D viscoelastic full-waveform inversion of shallow seismic wavefield acquired at the Krauthausen test site
Gao, L.; Pan, Y.; Rieder, A.; Bohlen, T.; Weijian, M.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000147889
Gao, L.; Pan, Y.; Rieder, A.; Bohlen, T.; Weijian, M.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000147889
Seismic imaging with generalized Radon transforms: stability of the Bolker condition
Kunstmann, P. C.; Quinto, E. T.; Rieder, A.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000141638
Kunstmann, P. C.; Quinto, E. T.; Rieder, A.
2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000141638
On the iterative regularization of non-linear illposed problems in L∞
Pieronek, L.; Rieder, A.
2021. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000140578
Pieronek, L.; Rieder, A.
2021. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000140578
Tangential cone condition and Lipschitz stability for the full waveform forward operator in the acoustic regime
Eller, M.; Rieder, A.
2021. Inverse problems, 37 (8), Art.-Nr.: 085011. doi:10.1088/1361-6420/ac11c5
Eller, M.; Rieder, A.
2021. Inverse problems, 37 (8), Art.-Nr.: 085011. doi:10.1088/1361-6420/ac11c5
Multiparameter viscoelastic full waveform inversion of shallow seismic surface waves with a preconditioned truncated-Newton method
Gao, L.; Pan, Y.; Rieder, A.; Bohlen, T.
2021. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000131530
Gao, L.; Pan, Y.; Rieder, A.; Bohlen, T.
2021. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000131530
Multiparameter viscoelastic full-waveform inversion of shallow-seismic surface waves with a pre-conditioned truncated Newton method
Gao, L.; Pan, Y.; Rieder, A.; Bohlen, T.
2021. Geophysical Journal International, 227 (3), 2044–2057. doi:10.1093/gji/ggab311
Gao, L.; Pan, Y.; Rieder, A.; Bohlen, T.
2021. Geophysical Journal International, 227 (3), 2044–2057. doi:10.1093/gji/ggab311
Visco-acoustic full waveform inversion: From a DG forward solver to a Newton-CG inverse solver
Bohlen, T.; Fernandez, M. R.; Ernesti, J.; Rheinbay, C.; Rieder, A.; Wieners, C.
2021. Computers and Mathematics with Applications, 100, 126–140. doi:10.1016/j.camwa.2021.09.001
Bohlen, T.; Fernandez, M. R.; Ernesti, J.; Rheinbay, C.; Rieder, A.; Wieners, C.
2021. Computers and Mathematics with Applications, 100, 126–140. doi:10.1016/j.camwa.2021.09.001
Erratum: Inverse Problems for Abstract Evolution Equations II: Higher Order Differentiability for Viscoelasticity
Kirsch, A.; Rieder, A.
2021. SIAM journal on applied mathematics, 81 (1), 282–283. doi:10.1137/20M1372160
Kirsch, A.; Rieder, A.
2021. SIAM journal on applied mathematics, 81 (1), 282–283. doi:10.1137/20M1372160
An all-at-once approach to full waveform inversion in the viscoelastic regime
Rieder, A.
2021. Mathematical Methods in the Applied Sciences, 44 (8), 6376–6388. doi:10.1002/mma.7190
Rieder, A.
2021. Mathematical Methods in the Applied Sciences, 44 (8), 6376–6388. doi:10.1002/mma.7190
Tangential cone condition and Lipschitz stability for the full waveform forward operator in the acoustic regime
Eller, M.; Rieder, A.
2021. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000130168/v2
Eller, M.; Rieder, A.
2021. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000130168/v2
Imaging with the elliptic radon transform in three dimensions from an analytical and numerical perspective
Grathwohl, C.; Kunstmann, P. C.; Quinto, E. T.; Rieder, A.
2020. SIAM journal on imaging sciences, 13 (4), 2250–2280. doi:10.1137/20M1332657
Grathwohl, C.; Kunstmann, P. C.; Quinto, E. T.; Rieder, A.
2020. SIAM journal on imaging sciences, 13 (4), 2250–2280. doi:10.1137/20M1332657
An all-at-once approach to full wavefrom seismic inversion in the viscoelastic regime
Rieder, A.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000119758
Rieder, A.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000119758
Imaging with the elliptic Radon transform in 3D from an analytical and numerical perspective
Grathwohl, C.; Kunstmann, P. C.; Quinto, E. T.; Rieder, A.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000118531
Grathwohl, C.; Kunstmann, P. C.; Quinto, E. T.; Rieder, A.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000118531
Visco-acoustic full waveform seismic inversion: from a DG forward solver to a Newton-CG inverse solver
Bohlen, T.; Fernandez, M. R.; Ernesti, J.; Rheinbay, C.; Rieder, A.; Christian, W.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000105695
Bohlen, T.; Fernandez, M. R.; Ernesti, J.; Rheinbay, C.; Rieder, A.; Christian, W.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000105695
Seismic Imaging with the Elliptic Radon Transform in 3D: Analytical and Numerical Aspects. PhD dissertation
Grathwohl, C.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000105093
Grathwohl, C.
2020. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000105093
Inverse Problems for Abstract Evolution Equations II: Higher Order Differentiability for Viscoelasticity
Kirsch, A.; Rieder, A.
2019. SIAM journal on applied mathematics, 79 (6), 2639–2662. doi:10.1137/19M1269403
Kirsch, A.; Rieder, A.
2019. SIAM journal on applied mathematics, 79 (6), 2639–2662. doi:10.1137/19M1269403
Inverse problems for abstract evolution equations II: higher order differentiability for viscoelasticity
Kirsch, A.; Rieder, A.
2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000095973
Kirsch, A.; Rieder, A.
2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000095973
Microlocal analysis of imaging operators for effective common offset seismic reconstruction
Grathwohl, C.; Kunstmann, P.; Quinto, E. T.; Rieder, A.
2018. Inverse problems, 34 (11), 114001. doi:10.1088/1361-6420/aadc2a
Grathwohl, C.; Kunstmann, P.; Quinto, E. T.; Rieder, A.
2018. Inverse problems, 34 (11), 114001. doi:10.1088/1361-6420/aadc2a
Microlocal analysis of imaging operators for effective common offset seismic reconstruction
Grathwohl, C.; Kunstmann, P.; Rieder, A.; Quinto, E. T.
2018. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000083268
Grathwohl, C.; Kunstmann, P.; Rieder, A.; Quinto, E. T.
2018. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000083268
Approximate inverse for the common offset acquisition geometry in 2D seismic imaging
Grathwohl, C.; Kunstmann, P.; Quinto, E. T.; Rieder, A.
2018. Inverse problems, 34 (1), Art.Nr. 014002. doi:10.1088/1361-6420/aa9900
Grathwohl, C.; Kunstmann, P.; Quinto, E. T.; Rieder, A.
2018. Inverse problems, 34 (1), Art.Nr. 014002. doi:10.1088/1361-6420/aa9900
Adaptive wavelet collocation method for simulation of a 2D micro-ring resonator
Li, H.; Hiremath, K. R.; Rieder, A.; Freude, W.
2017. Optik, 131, 655–670. doi:10.1016/j.ijleo.2016.11.154
Li, H.; Hiremath, K. R.; Rieder, A.; Freude, W.
2017. Optik, 131, 655–670. doi:10.1016/j.ijleo.2016.11.154
Approximate inverse for the common offset acquisition geometry in 2D seismic imaging
Grathwohl, C.; Kunstmann, P.; Quinto, E. T.; Rieder, A.
2016. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000062931
Grathwohl, C.; Kunstmann, P.; Quinto, E. T.; Rieder, A.
2016. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000062931
Inverse problems for abstract evolution equations with applications in electrodynamics and elasticity
Kirsch, A.; Rieder, A.
2016. Inverse problems, 32 (8), Art.Nr.: 085001. doi:10.1088/0266-5611/32/8/085001
Kirsch, A.; Rieder, A.
2016. Inverse problems, 32 (8), Art.Nr.: 085001. doi:10.1088/0266-5611/32/8/085001
A model-aware inexact Newton scheme for electrical impedance tomography. PhD dissertation
Winkler, R.
2016. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000054135
Winkler, R.
2016. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000054135
Inverse problems for abstract evolution equations with applications in electrodynamics and elasticity
Kirsch, A.; Rieder, A.
2016. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000051550
Kirsch, A.; Rieder, A.
2016. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000051550
Corrigendum: Seismic tomography is locally ill-posed (2014 Inverse Problems 30 125001)
Kirsch, A.; Rieder, A.
2015. Inverse problems, 31 (11), 119501. doi:10.1088/0266-5611/31/11/119501
Kirsch, A.; Rieder, A.
2015. Inverse problems, 31 (11), 119501. doi:10.1088/0266-5611/31/11/119501
On Inexact Newton Methods for Inverse Problems in Banach Spaces. PhD dissertation
Margotti, F. J.
2015. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000048606
Margotti, F. J.
2015. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000048606
Model-aware Newton-type inversion scheme for electrical impedance tomography
Winkler, R.; Rieder, A.
2015. Inverse problems, 31 (4), 045009. doi:10.1088/0266-5611/31/4/045009
Winkler, R.; Rieder, A.
2015. Inverse problems, 31 (4), 045009. doi:10.1088/0266-5611/31/4/045009
An inexact Newton regularization in Banach spaces based on the nonstationary iterated Tikhonov method
Margotti, F.; Rieder, A.
2014. Journal of Inverse and Ill-Posed Problems, 23 (4), 373–392. doi:10.1515/jiip-2014-0035
Margotti, F.; Rieder, A.
2014. Journal of Inverse and Ill-Posed Problems, 23 (4), 373–392. doi:10.1515/jiip-2014-0035
Fine-tuning of the complete electrode model
Winkler, R.; Staboulis, S.; Rieder, A.; Hyvönen, N.
2014. 15th International Conference on Biomedical Applications of Electrical Impedance, Gananoque, Canada, April 24-26, 2014. Ed.: A. Adler, 28/1–1, Systems and Computer Engineering
Winkler, R.; Staboulis, S.; Rieder, A.; Hyvönen, N.
2014. 15th International Conference on Biomedical Applications of Electrical Impedance, Gananoque, Canada, April 24-26, 2014. Ed.: A. Adler, 28/1–1, Systems and Computer Engineering
Geometric reconstruction in bioluminescence tomography
Kreutzmann, T.; Rieder, A.
2014. Inverse Problems and Imaging, 8 (1), 173–197. doi:10.3934/ipi.2014.8.173
Kreutzmann, T.; Rieder, A.
2014. Inverse Problems and Imaging, 8 (1), 173–197. doi:10.3934/ipi.2014.8.173
A kaczmarz version of the REGINN-Landweber iteration for ill-posed problems in Banach spaces
Margotti, F.; Rieder, A.; Leitao, A.
2014. SIAM Journal on Numerical Analysis, 52 (3), 1439–1465. doi:10.1137/130923956
Margotti, F.; Rieder, A.; Leitao, A.
2014. SIAM Journal on Numerical Analysis, 52 (3), 1439–1465. doi:10.1137/130923956
Seismic tomography is locally ill-posed
Kirsch, A.; Rieder, A.
2014. Inverse Problems, 30 (12), 125001. doi:10.1088/0266-5611/30/12/125001
Kirsch, A.; Rieder, A.
2014. Inverse Problems, 30 (12), 125001. doi:10.1088/0266-5611/30/12/125001
Resolution-controlled conductivity discretization in electrical impedance tomography
Winkler, R.; Rieder, A.
2014. SIAM Journal on Imaging Sciences, 7 (4), 2048–2077. doi:10.1137/140958955
Winkler, R.; Rieder, A.
2014. SIAM Journal on Imaging Sciences, 7 (4), 2048–2077. doi:10.1137/140958955
On the linearization of operators related to the full waveform inversion in seismology
Kirsch, A.; Rieder, A.
2014. Mathematical Methods in the Applied Sciences, 37 (18), 2995–3007. doi:10.1002/mma.3037
Kirsch, A.; Rieder, A.
2014. Mathematical Methods in the Applied Sciences, 37 (18), 2995–3007. doi:10.1002/mma.3037
Model-Aware Newton-Type Inversion Scheme For Electrical Impedance Tomography
Winkler, R.; Rieder, A.
2014. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000045979
Winkler, R.; Rieder, A.
2014. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000045979
An Inexact Newton Regularization in Banach Spaces based on the Nonstationary Iterated Tikhonov Method
Margotti, F.; Rieder, A.
2014. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000045978
Margotti, F.; Rieder, A.
2014. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000045978
Seismic Tomography is Locally Ill-Posed
Kirsch, A.; Rieder, A.
2014. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000039448
Kirsch, A.; Rieder, A.
2014. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000039448
Resolution-Controlled Conductivity Discretization in Electrical Impedance Tomography
Winkler, R.; Rieder, A.
2014. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000039447
Winkler, R.; Rieder, A.
2014. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000039447
Geometric Regularization in Bioluminescence Tomography. PhD dissertation
Kreutzmann, T.
2014. KIT Scientific Publishing. doi:10.5445/KSP/1000037411
Kreutzmann, T.
2014. KIT Scientific Publishing. doi:10.5445/KSP/1000037411
Defect Classification on Specular Surfaces Using Wavelets
Hahn, A.; Ziebarth, M.; Heizmann, M.; Rieder, A.
2013. Scale Space and Variational Methods in Computer Vision - 4th International Conference (SSVM’13), Schloss Seggau, Leibnitz, Austria, June 2-6, 2013 - Proceedings. Ed.: A. Kuijper, 501–512, Springer-Verlag. doi:10.1007/978-3-642-38267-3_42
Hahn, A.; Ziebarth, M.; Heizmann, M.; Rieder, A.
2013. Scale Space and Variational Methods in Computer Vision - 4th International Conference (SSVM’13), Schloss Seggau, Leibnitz, Austria, June 2-6, 2013 - Proceedings. Ed.: A. Kuijper, 501–512, Springer-Verlag. doi:10.1007/978-3-642-38267-3_42
On the Linearization of Operators Related to the Full Waveform Inversion in Seismology
Kirsch, A.; Rieder, A.
2013. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000035943
Kirsch, A.; Rieder, A.
2013. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000035943
A Kaczmarz Version of the REGINN-Landweber Iteration for Ill-Posed Problems in Banach Spaces
Margotti, F.; Rieder, A.; Leitao, A.
2013. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000035942
Margotti, F.; Rieder, A.; Leitao, A.
2013. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000035942
Adaptive Wavelet Collocation Method for Simulation of Time Dependent Maxwell’s Equations
Li, H.; Hiremath, K.; Rieder, A.; Freude, W.
2012. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000028340
Li, H.; Hiremath, K.; Rieder, A.; Freude, W.
2012. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000028340
The Approximate Inverse in Action IV: Semi-Discrete Equations in a Banach Space Setting
Schuster, T.; Rieder, A.; Schöpfer, F.
2012. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000028334
Schuster, T.; Rieder, A.; Schöpfer, F.
2012. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000028334
Numerical simulation of a micro-ring resonator with adaptive wavelet collocation method. PhD dissertation
Li, H.
2011. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000024186
Li, H.
2011. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000024186
Local Inversion Of The Sonar Transform Regularized By The Approximate Inverse
Quinto, E. T.; Rieder, A.; Schuster, T.
2010. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000024895
Quinto, E. T.; Rieder, A.; Schuster, T.
2010. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000024895
Bounds for optimization of the reflection coefficient by constrained optimization in hardy spaces. PhD dissertation
Schneck, A.
2009. Universitätsverlag Karlsruhe. doi:10.5445/KSP/1000011809
Schneck, A.
2009. Universitätsverlag Karlsruhe. doi:10.5445/KSP/1000011809
Towards a general convergence theory for inexact Newton Regularizations
Lechleiter, A.; Rieder, A.
2009. Universität Karlsruhe (TH). doi:10.5445/IR/1000010482
Lechleiter, A.; Rieder, A.
2009. Universität Karlsruhe (TH). doi:10.5445/IR/1000010482
Shape from Specular Reflection and Optical Flow
Beyerer, J.; Lellmann, J.; Balzer, J.; Rieder, A.
2008. International Journal of Computer Vision, 80 (2), 226–241
Beyerer, J.; Lellmann, J.; Balzer, J.; Rieder, A.
2008. International Journal of Computer Vision, 80 (2), 226–241
Tangential cone condition and other open problems in electrical impedance tomography
Rieder, A.; Lechleiter, A.
2008. Vortrag beim Workshop Hybrid Imaging, Januar 2008, Obergurgl. Folien, 58 S., Obergurgl
Rieder, A.; Lechleiter, A.
2008. Vortrag beim Workshop Hybrid Imaging, Januar 2008, Obergurgl. Folien, 58 S., Obergurgl
Shape from specular reflections and optical flow
Rieder, A.; Lellman, J.; Balzer J.; Beyerer, J.
2008. International Journal of Computer Vision, 80 (2), 226–241
Rieder, A.; Lellman, J.; Balzer J.; Beyerer, J.
2008. International Journal of Computer Vision, 80 (2), 226–241
Newton regularization for impedance tomography: convergence by local injectivity
Rieder, A.; Lechleiter, A.
2008. Inverse Problems, 24 (6), 065009/1–18
Rieder, A.; Lechleiter, A.
2008. Inverse Problems, 24 (6), 065009/1–18
Tangential cone conditon for electrical impedance tomography
Rieder, A.; Lechleiter, A.
2007. Oberwolfach Reports, 4 (1), 719–721
Rieder, A.; Lechleiter, A.
2007. Oberwolfach Reports, 4 (1), 719–721
Optimality of the fully discrete filtered backprojection algorithm for tomographic inversion
Rieder, A.; Schneck, A.
2007. Numerische Mathematik, 108 (1), 151–175
Rieder, A.; Schneck, A.
2007. Numerische Mathematik, 108 (1), 151–175
Newton regularizations for impedance tomography. Covergence by local injectivity
Lechleiter, A.; Rieder, A.
2007. doi:10.5445/IR/1000008734
Lechleiter, A.; Rieder, A.
2007. doi:10.5445/IR/1000008734
Shape from Specular Reflection and Optical Flow
Lellmann, J.; Balzer, J.; Rieder, A.; Beyerer, J.
2007. doi:10.5445/IR/1000007856
Lellmann, J.; Balzer, J.; Rieder, A.; Beyerer, J.
2007. doi:10.5445/IR/1000007856
Runge-Kutta integrators yield optimal regularization schemes
Rieder, A.
2006. Joint Mathematics Meeting of the AMS and MAA, Januar 2005, Atlanta, GA. Folien, 21 S., Atlanta
Rieder, A.
2006. Joint Mathematics Meeting of the AMS and MAA, Januar 2005, Atlanta, GA. Folien, 21 S., Atlanta
Optimality of the fully discrete filtered backprojection algorithm in 2D
Rieder, A.; Schneck, A.
2006. Mathematical Methods in Tomography. Organized by A.K. Louis, 2102–2104, Oberwolfach
Rieder, A.; Schneck, A.
2006. Mathematical Methods in Tomography. Organized by A.K. Louis, 2102–2104, Oberwolfach
Newton-CG for nonlinear inverse problems
Rieder, A.
2006. Symposium on Inverse Problems, Sept. 28th, 2006, Chemnitz. Folien, 22 S., Chemnitz
Rieder, A.
2006. Symposium on Inverse Problems, Sept. 28th, 2006, Chemnitz. Folien, 22 S., Chemnitz
Optimality of the fully discrete filtered backprojection algorithm in 2D
Rieder, A.; Schneck, A.
2006. Oberwolfach Reports, 3 (3), 2101 - 2104
Rieder, A.; Schneck, A.
2006. Oberwolfach Reports, 3 (3), 2101 - 2104
Newton regularizations for impedance tomography: a numerical study
Rieder, A.; Lechleiter, A.
2006. Inverse Problems, 22 (6), 1967–1987
Rieder, A.; Lechleiter, A.
2006. Inverse Problems, 22 (6), 1967–1987
Optimale Beschichtung von Laserspiegeln zur Erzeugung ultrakurzer Laserpulse. PhD dissertation
Brunk, J.
2006. Universitätsverlag Karlsruhe. doi:10.5445/KSP/1000005155
Brunk, J.
2006. Universitätsverlag Karlsruhe. doi:10.5445/KSP/1000005155
Optimality of the fully discrete filtered backprojection algorithm for tomographic inversion
Rieder, A.; Schneck, A.
2006. Universität Karlsruhe (TH). doi:10.5445/IR/1000005033
Rieder, A.; Schneck, A.
2006. Universität Karlsruhe (TH). doi:10.5445/IR/1000005033
Newton regularization for impedance tomography: a numerical study
Rieder, A.; Lechleiter, A.
2006. doi:10.5445/IR/1000004540
Rieder, A.; Lechleiter, A.
2006. doi:10.5445/IR/1000004540
Optimal coating of laser mirrors for the generation of ultrashort laser pulses
Rieder, A.; Brunk, J.; Morgner, U.
2005. PAMM - Proceedings in applied mathematics and mechanics, 5, 643–644
Rieder, A.; Brunk, J.; Morgner, U.
2005. PAMM - Proceedings in applied mathematics and mechanics, 5, 643–644
Runge-Kutta integrators yield optimal regularization schemes
Rieder, A.
2005. Inverse Problems, 21 (2), 453–471
Rieder, A.
2005. Inverse Problems, 21 (2), 453–471
Inexact Newton regularization using conjugate gradients as inner iteration
Rieder, A.
2005. SIAM Journal on Numerical Analysis, 73 (2), 604–622
Rieder, A.
2005. SIAM Journal on Numerical Analysis, 73 (2), 604–622
An overview on mathematical methods in tomography
Rieder, A.
2004. IRMA, Universite Louis Pasteur, Mai 2004, Strasbourg. Folien, 25 S., Strasbourg
Rieder, A.
2004. IRMA, Universite Louis Pasteur, Mai 2004, Strasbourg. Folien, 25 S., Strasbourg
The approximate inverse in action III: 3D-Doppler tomography
Rieder, A.; Schuster, T.
2004. Numerische Mathematik, 97 (2), 353–378
Rieder, A.; Schuster, T.
2004. Numerische Mathematik, 97 (2), 353–378
Inexact Newton regularization using conjugate gradients as inner iteration
Rieder, A.
2004. Universität Karlsruhe (TH)
Rieder, A.
2004. Universität Karlsruhe (TH)
Runge-Kutta integrators yield optimal regularization schemes
Rieder, A.
2004. Universität Karlsruhe (TH)
Rieder, A.
2004. Universität Karlsruhe (TH)
Semi-diskrete inverse Probleme: Die Approximative Inverse
Rieder, A.
2003. AG Inverse Probleme, Juli 2003, Fakultät für Mathematik, Universität Karlsruhe. Folien, 14 S., Universität Karlsruhe (TH)
Rieder, A.
2003. AG Inverse Probleme, Juli 2003, Fakultät für Mathematik, Universität Karlsruhe. Folien, 14 S., Universität Karlsruhe (TH)
Keine Probleme mit Inversen Problemen : eine Einführung in ihre stabile Lösung
Rieder, A.
2003. Vieweg Verlag
Rieder, A.
2003. Vieweg Verlag
The approximate inverse in action II: convergence and stability
Rieder, A.; Schuster, T.
2003. Mathematics of Computation, 72 (243), 1399–1415
Rieder, A.; Schuster, T.
2003. Mathematics of Computation, 72 (243), 1399–1415
The semi-discrete filtered backprojection algorithm is optimal for tomographic inversion
Rieder, A.; Faridani, A.
2003. SIAM Journal on Numerical Analysis, 41 (3), 869–892
Rieder, A.; Faridani, A.
2003. SIAM Journal on Numerical Analysis, 41 (3), 869–892
The semi-discrete filtered backprojection algorithm is optimal for tomographic inversion
Rieder, A.; Faridani, A.
2002. Karlsruhe 2002. (Preprint. Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Universität Karlsruhe. 2002,6.)
Rieder, A.; Faridani, A.
2002. Karlsruhe 2002. (Preprint. Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Universität Karlsruhe. 2002,6.)
Adaptive multiresolution split-step wavelet collocation method for nonlinear optical pulse propagation
Kremp, T.; Killi, A.; Rieder, A.; Freude, W.
2002. Technical digest. Conference on Lasers and Electro-Optics [CLEO 2002], 533, Optica Publishing Group (OSA)
Kremp, T.; Killi, A.; Rieder, A.; Freude, W.
2002. Technical digest. Conference on Lasers and Electro-Optics [CLEO 2002], 533, Optica Publishing Group (OSA)
The approximate inverse in action III: 3D-Doppler tomography
Rieder, A.; Schuster, T.
2002. Karlsruhe 2002. (Preprint. Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Universität Karlsruhe. 2002,15.)
Rieder, A.; Schuster, T.
2002. Karlsruhe 2002. (Preprint. Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Universität Karlsruhe. 2002,15.)
Split-step wavelet collocation method for nonlinear optical pulse propagation
Kremp, T.; Killi, A.; Rieder, A.; Freude, W.
2002. IEICE Transactions on Electronics, 85 (3), 534–543
Kremp, T.; Killi, A.; Rieder, A.; Freude, W.
2002. IEICE Transactions on Electronics, 85 (3), 534–543
Classification of endocardial electrograms using adapted wavelet packets and neural networks
Strauss, D.; Jung, J.; Rieder, A.; Manoli, Y.
2001. Annals of biomedical engineering, 29 (6), 483–492
Strauss, D.; Jung, J.; Rieder, A.; Manoli, Y.
2001. Annals of biomedical engineering, 29 (6), 483–492
A promising approach to morphological endocardial signal discrimination: adapted multiresolution signal decompositions
Strauss, D.; Sinnwell, T.; Rieder, A.; Manoli, Y.; Jung, J.
2001. Applied signal processing, 6 (4), 182–193
Strauss, D.; Sinnwell, T.; Rieder, A.; Manoli, Y.; Jung, J.
2001. Applied signal processing, 6 (4), 182–193
How to scale reconstruction filters
Rieder, A.
2001. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 81 (3 Suppl), S621 - S622
Rieder, A.
2001. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 81 (3 Suppl), S621 - S622
On filter design principles in 2D computerized tomography
Rieder, A.
2001. Radon transforms and tomography. Ed.: E.T. Quinto, 207–226, American Mathematical Soc
Rieder, A.
2001. Radon transforms and tomography. Ed.: E.T. Quinto, 207–226, American Mathematical Soc
On convergence rates of inexact Newton regularizations
Rieder, A.
2001. Numerische Mathematik, 88 (2), 347–365
Rieder, A.
2001. Numerische Mathematik, 88 (2), 347–365
Split-step wavelet collocation method for nonlinear optical pulse propagation
Kremp, T.; Killi, A.; Rieder, A.; Freude, W.
2001. Universität Karlsruhe (TH)
Kremp, T.; Killi, A.; Rieder, A.; Freude, W.
2001. Universität Karlsruhe (TH)
The approximate inverse in action II: convergence and stability
Rieder, A.; Schuster, T.
2001. Karlsruhe 2001. (Preprint. Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Universität Karlsruhe. 2001,15.)
Rieder, A.; Schuster, T.
2001. Karlsruhe 2001. (Preprint. Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Universität Karlsruhe. 2001,15.)
Evaluating the reconstruction limits and the effect of modeling errors in noninvasive cardiac source imaging
Skipa, O.; Holtrop, N.; Werner, C.; Sachse, F.; Rieder, A.; Doessel, O.
2001. Biomedizinische Technik, 46 (2), 88–90
Skipa, O.; Holtrop, N.; Werner, C.; Sachse, F.; Rieder, A.; Doessel, O.
2001. Biomedizinische Technik, 46 (2), 88–90
Das inverse Problem der Elektrokardiographie - Rekonstruktion realistischer Qellverteilungen
Holtrop, N.; Skipa, O.; Werner, C.; Sachse, F.; Dössel, O.; Rieder, A.
2001. Biomedizinische Technik, 46 (1), 508–509
Holtrop, N.; Skipa, O.; Werner, C.; Sachse, F.; Dössel, O.; Rieder, A.
2001. Biomedizinische Technik, 46 (1), 508–509
A unified convergence theory for the iterative regularization of nonlinear ill-posed problems
Rieder, A.
2000. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 80 (Suppl. 1), S245 - S248
Rieder, A.
2000. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 80 (Suppl. 1), S245 - S248
The recognition of antegrade and retrograde atrial activation patterns using hybrid wavelet-neural network schemes
Rieder, A.; Strauß, D.; Jung, J.
2000. Computers in Cardiology 2000, 545–548, Institute of Electrical and Electronics Engineers (IEEE)
Rieder, A.; Strauß, D.; Jung, J.
2000. Computers in Cardiology 2000, 545–548, Institute of Electrical and Electronics Engineers (IEEE)
A promising approach to morphological endocardial signal discriminations: adapted multiresolution signal decompositions
Strauss, D.; Sinnwell, T.; Rieder, A.; Manoli, Y.; Jung, J.
2000. Karlsruhe 2000. (Preprint. Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Universität Karlsruhe. 2000,2.)
Strauss, D.; Sinnwell, T.; Rieder, A.; Manoli, Y.; Jung, J.
2000. Karlsruhe 2000. (Preprint. Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Universität Karlsruhe. 2000,2.)
Classification of endocardial electrograms using adapted wavelet packets and neural networks
Strauss, D.; Jung, J.; Rieder, A.; Manoli, Y.
2000. Karlsruhe 2000. (Preprint. Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Universität Karlsruhe. 2000,5.)
Strauss, D.; Jung, J.; Rieder, A.; Manoli, Y.
2000. Karlsruhe 2000. (Preprint. Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Universität Karlsruhe. 2000,5.)
Embedding and a priori wavelet-adaptivity for Dirichlet problems
Rieder, A.
2000. Mathematical Modelling and Numerical Analysis, 34 (6), 1189–1202
Rieder, A.
2000. Mathematical Modelling and Numerical Analysis, 34 (6), 1189–1202
Approximate inverse in action with an application to 2D-computerized tomography
Rieder, A.; Schuster, T.
2000. SIAM Journal on Numerical Analysis, 37 (6), 1909–1929
Rieder, A.; Schuster, T.
2000. SIAM Journal on Numerical Analysis, 37 (6), 1909–1929
Approximate inverse meets local tomography
Rieder, A.; Dietz, R.; Schuster, T.
2000. Mathematical Methods in the Applied Sciences, 23 (15), 1373–1387
Rieder, A.; Dietz, R.; Schuster, T.
2000. Mathematical Methods in the Applied Sciences, 23 (15), 1373–1387
Principles of reconstruction filter design in 2D-computerized tomography
Rieder, A.
2000. Universität Karlsruhe (TH)
Rieder, A.
2000. Universität Karlsruhe (TH)
Multilevel methods based on wavelet decompositions
Rieder, A.
1999. East West Journal of Numerical Mathematics, 2 (4), 313–330
Rieder, A.
1999. East West Journal of Numerical Mathematics, 2 (4), 313–330
Embedding and a-priori wavelet-adaptivity for Dirichlet problems
Rieder, A.
1999. Universität Karlsruhe (TH)
Rieder, A.
1999. Universität Karlsruhe (TH)
Approximate inverse meets local tomography
Rieder, A.; Dietz, R.; Schuster, T.
1999. Karlsruhe 1999. (Preprint. Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung. 1999,6.)
Rieder, A.; Dietz, R.; Schuster, T.
1999. Karlsruhe 1999. (Preprint. Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung. 1999,6.)
On the regularization of nonlinear ill-posed problems via inexact Newton interactions
Rieder, A.
1999. Inverse problems, 15 (1), 309–327
Rieder, A.
1999. Inverse problems, 15 (1), 309–327
A domain embedding method for Dirichlet problems in arbitrary space dimension
Rieder, A.
1998. Mathematical modelling and numerical analysis (M2AN), 32 (4), 405–431
Rieder, A.
1998. Mathematical modelling and numerical analysis (M2AN), 32 (4), 405–431
A painless and direct way from integral to discrete fast wavelet transforms
Rieder, A.
1998. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 8 (11), 781–785
Rieder, A.
1998. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 8 (11), 781–785
Wavelet-Methoden für schlecht-gestellte und elliptische Probleme
Rieder, A.
1997. Martin-Luther-Universität Halle-Wittenberg
Rieder, A.
1997. Martin-Luther-Universität Halle-Wittenberg
Wavelet-accelerated Tikhonov-Phillips regularization with applications
Rieder, A.; Maaß, P.
1997. Inverse Problems in Medical Imaging and Nondestructive Testing. Ed.: H. W. Engl, 134–159, Springer-Verlag
Rieder, A.; Maaß, P.
1997. Inverse Problems in Medical Imaging and Nondestructive Testing. Ed.: H. W. Engl, 134–159, Springer-Verlag
On embedding techniques for 2nd-order elliptic problems
Rieder, A.
1997. Computational science for the 21st century. Ed.: M-O. Bristeau, 179–188, John Wiley and Sons
Rieder, A.
1997. Computational science for the 21st century. Ed.: M-O. Bristeau, 179–188, John Wiley and Sons
Wavelet multilevel solvers for linear ill-posed problems stabilized by Tikhonov regularization
Rieder, A.
1997. Multiscale wavelet methods for partial differential equations. Ed.: W. Dahmen, 347–380, Academic Press
Rieder, A.
1997. Multiscale wavelet methods for partial differential equations. Ed.: W. Dahmen, 347–380, Academic Press
A wavelet multilevel method for ill-posed problems stabilized by Tikhonov regularization,
Rieder, A.
1997. Numerische Mathematik, 75 (4), 501–522
Rieder, A.
1997. Numerische Mathematik, 75 (4), 501–522
Additive and multiplicative Schwarz algorithms for linear ill-posed problems
Rieder, A.
1996. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 76 (Suppl. 1), 197–190
Rieder, A.
1996. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 76 (Suppl. 1), 197–190
A wavelet multigrid preconditioner for Dirichlet boundary-value problems in general domains
Rieder, A.; Glowinski, R.; Wells Jr., R. O.; Zhou, X.
1996. Mathematical modelling and numerical analysis (M2AN), 30 (6), 711–729
Rieder, A.; Glowinski, R.; Wells Jr., R. O.; Zhou, X.
1996. Mathematical modelling and numerical analysis (M2AN), 30 (6), 711–729
A preconditioned CG-method for wavelet-Galerkin discretizations of elliptic problems
Rieder, A.; Glowinski, R.; Wells Jr., R. O.; Zhou, X.
1995. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 75, 683–684
Rieder, A.; Glowinski, R.; Wells Jr., R. O.; Zhou, X.
1995. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 75, 683–684
On the wavelet frequency decomposition method
Rieder, A.; Wells Jr., R. O.; Zhou, X.
1994. Wavelet Applications. Ed.: H. H. Szu, 14–18, Bellingham
Rieder, A.; Wells Jr., R. O.; Zhou, X.
1994. Wavelet Applications. Ed.: H. H. Szu, 14–18, Bellingham
The high frequency behaviour of continuous wavelet transforms
Rieder, A.
1994. Applicable Analysis, 52 (1-4), 125–141
Rieder, A.
1994. Applicable Analysis, 52 (1-4), 125–141
A wavelet approach to robust multilevel solvers for anisotropic elliptic problems
Rieder, A.; Wells Jr., R. O.; Zhou, X.
1994. Applied and Computational Harmonic Analysis, 1 (4), 355–367
Rieder, A.; Wells Jr., R. O.; Zhou, X.
1994. Applied and Computational Harmonic Analysis, 1 (4), 355–367
On the robustness of the damped V-cycle of the wavelet frequency decomposition multigrid method
Rieder, A.; Zhou, X.
1994. Computing, 53 (2), 155–171
Rieder, A.; Zhou, X.
1994. Computing, 53 (2), 155–171
Wavelet analysis of auscultory blood pressure signals
Rieder, A.; Hammer, H.; Maaß, P.; Meyer, J.-U.
1993. Proceedings of the Second European Conference on Engineering and Medicine. Ed.: J. E. W. Beneken, 322–323, Elsevier
Rieder, A.; Hammer, H.; Maaß, P.; Meyer, J.-U.
1993. Proceedings of the Second European Conference on Engineering and Medicine. Ed.: J. E. W. Beneken, 322–323, Elsevier
The wavelet transform on Sobolev spaces and its approximation properties
Rieder, A.
1991. Numerische Mathematik, 58 (1), 875–894
Rieder, A.
1991. Numerische Mathematik, 58 (1), 875–894
Approximationseigenschaften der Wavelet-Transformation
Rieder, A.
1990. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 70 (6), T577 - T578
Rieder, A.
1990. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 70 (6), T577 - T578
Incomplete data problems in X-ray computerized tomography
Rieder, A.; Louis, A. K.
1989. Numerische Mathematik, 56 (4), 371 383
Rieder, A.; Louis, A. K.
1989. Numerische Mathematik, 56 (4), 371 383