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Abstract We provide an error analysis of two methods for time stepping the wave equation.

These are based on the Hybridizable Discontinuous Galerkin (HDG) method to discretize

in space, and the continuous Galerkin method to discretize in time. Two variants of HDG

are proposed: a dissipative method based on the standard numerical flux used for elliptic

problems, and a non-dissipative method based on a new choice of the flux involving time

derivatives. The analysis of the fully discrete problem is based on simplified arguments using

projections rather than explicit interpolants used in previous work. Some numerical results

are shown that illuminate the theory.
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1 Introduction

The wave equation is often discretized using explicit time stepping methods. In this case

the use of a discontinuous Galerkin method in space is attractive because these methods

give a block diagonal mass matrix. However, if the grid is unstructured and more refined in

some subregions of the domain compared to the average mesh size (for example to model

small geometric features), an explicit method would require small time steps governed by

the smallest elements to maintain stability (using a method that uses different time steps

in different parts of the mesh is also a possible remedy in this case, see, e.g., Grote and

Mitkova [8]).

As pointed out by Nguyen, Peraire and Cockburn in [16], discontinuous Galerkin meth-

ods are not generally well suited to implicit time stepping since the number of spatial degrees
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of freedom is generally larger for a discontinuous Galerkin method compared to a conform-

ing method. However hybridizable discontinuous Galerkin (HDG) methods are well suited

to implicit time stepping, since at each time step the element degrees of freedom can be

eliminated from the problem by cheap local calculations so that only degrees of freedom

associated with the numerical trace of the scalar variable on the skeleton of the mesh need

to be involved with a global calculation at each time step. (A comparative study of the effi-

ciency of conforming methods versus HDG schemes for elliptic problems has recently been

carried out by Kirby, Sherwin and Cockburn in [14].)

In [16] interesting numerical results are presented for a scheme that combines the HDG

method belonging to the general framework discussed by Cockburn, Gopalakrishnan and

Lazarov [3] (for a refined analysis see Cockburn, Gopalakrishnan and Sayas [4] and for er-

ror estimates for the Helmholtz equation see [7]) together with backward differentiation for-

mula or diagonally implicit Runge-Kutta (DIRK) methods in time. In particular it is shown

that, provided the time stepping method is sufficiently high order, post-processing can be

applied to extract inexpensive improved approximations to the fields. In addition energy

conservation results are proved, but no error estimates are provided.

In this paper we shall prove convergence of a method that combines one of two variants

of HDG methods in space with the continuous Galerkin method in time [5,12,13]. This time

stepping method is closely related to the Gauss-Legendre Runge-Kutta method [9, 10]; in

fact in our application the only difference resides in how the time integral of the source term

is handled. We provide an analysis of the continuous time Galerkin method based on the

work of [5,13]. In particular we prove that the resulting methods are unconditionally stable,

and analyze convergence.

We choose to analyze the continuous time Galerkin method in preference to a classical

analysis of the Runge-Kutta scheme for several reasons. First it is noted in [1] that related

Runge-Kutta and discontinuous Galerkin schemes can be viewed as approximations of the

continuous time Galerkin method using suitable quadrature, so understanding the funda-

mental scheme is important. In addition, a variational analysis proves convergence under

weaker conditions on the regularity of the solution than a classical analysis of the collo-

cation scheme because the data is not interpolated or approximated by quadrature. Finally,

Karakashian and Makridakis [12] note that the variational analysis is simpler than the anal-

ysis of corresponding implicit Runge-Kutta methods.

We rewrite the wave equation as a first order system involving velocity and pressure

and use the HDG scheme to discretize in space. After discretization the resulting system of

ordinary differential equations is similar to that arising from a mixed finite element method;

(see Geveci [6] for a classical approach to mixed systems). We know of no convergence

proof of the continuous time Galerkin method for the mixed system, but the approach we

use could be applied in that case as well.

Of course the main drawback of such methods is that a linear system must be solved

at each time step, and the size of the linear system increases with the number of stages

(or order) of the time stepping scheme (this increase in size does not occur for the DIRK

schemes in [16] and might be controlled by modifying the techniques from [17] previously

used for parabolic problems, but this is not considered here).

Our analysis of the continuous time Galerkin method uses a decomposition of the dis-

crete solution in time motivated by a similar decomposition used by French and Peterson in

[5]. However, because that paper focused on a first order system in time but a second order

system in space, we have to change the decomposition to enforce an orthogonality condi-

tion. This orthogonality condition is motivated by the analysis of continuous time Galerkin

methods in [12, 13], where the discrete solution is written explicitly using basis functions
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related to the Gauss-Legendre points in time. We avoid this explicit construction and work

only with projections, and this simplifies the analysis considerably.

As mentioned earlier, we consider two variants of the HDG method. One is a straight-

forward generalization to the time domain of the method in [3], which is also the method

used in [16]. As we shall see this method is dissipative, but also optimally convergent in

space and time. By modifying the HDG fluxes to using time derivative terms, we can obtain

a conservative scheme, but in that case do not prove optimal order convergence (missing by

a factor of h1/2 where h is the space grid size). Our limited numerical results do not exhibit

this loss. In either case we use the projection proposed in [4] to provide an approximation

operator in space.

In summary then, the novel content of this paper is to provide an analysis of the dissipa-

tive and new non-dissipative HDG methods in space using the continuous Galerkin method

in time. We also provide a simplified analysis of the continuous time Galerkin method based

on the work of [5, 12, 13]. Our analysis has relevance to other mixed systems.

The layout of the paper is as follows. In Section 2 we detail the problem we shall solve,

and its discretization in space by the two HDG methods considered here. We derive energy

relations for this semi-discrete problem and so show that one method is dissipative, while

the new method is not. Then we detail the continuous time Galerkin - HDG (CTG-HDG)

method. In Section 3 we introduce the decomposition of time dependent functions that un-

derlies our analysis and provide an analysis of the decomposition, as well as several other

approximation operators used in the analysis. Then in Section 4 we prove convergence of

the dissipative CTG-HDG scheme by first deriving a stability result, and then verifying con-

sistency before providing a final convergence result. The same general procedure is carried

out for the non-dissipative scheme in Section 5. In Section 6 we provide a few numerical

results to probe our theory. Finally in Section 7 we present some conclusions from our study.

2 The CTG-HDG method

2.1 Preliminaries

Given a final time T and a bounded Lipschitz polyhedral domain Ω ⊂ R
d , d = 2,3, with

boundary ∂ Ω and functions f = f (xxx, t) and g = g(xxx, t), we consider the wave equation

ü = ∆u+ f in Ω × (0,T ) (1a)

subject to the boundary data

u = g on ∂ Ω × (0,T ). (1b)

Here u(xxx, t) describes the displacement in some direction of the point xxx ∈ Ω at time t ≥ 0

and we assume functions u0 and u1 are given such that

u(·,0) = u0 and u̇(·,0) = u1 in Ω . (1c)

Throughout we denote by ẇ and ẅ the first and second derivative of w(xxx, t) with respect to

the variable t, respectively.

In this paper we wish to approximate the velocity v = u̇ as well as the pressure ppp = ∇u.

To apply the HDG method in space we rewrite (1) as a first order system

v̇ = ∇· ppp+ f in Ω × (0,T ), (2a)

ṗpp = ∇v in Ω × (0,T ), (2b)
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using boundary data

v = ġ on ∂ Ω × (0,T ) (2c)

and initial data

v(·,0) = v0 := u1 and ppp(·,0) = ppp0 := ∇u0 in Ω . (2d)

As usual we consider a spatial mesh covering Ω consisting of regular, i.e., non-degen-

erate [2], tetrahedra K with faces F in R
3 (or triangles K and edges F in R

2) and denote the

resulting collection of triangles/tetrahedra by Th. Accordingly hK denotes the diameter of

K ∈ Th and h := maxK hK . The collection of edges/faces is denoted by Eh, and the collection

of element boundaries by ∂Th := {∂ K | K ∈ Th}.

On each element K and each edge/face F we consider the local spaces of polynomials

of degree less than or equal to k ≥ 0,

W (K) := Pk(K), VVV (K) :=Pk(K) := (Pk(K))d and M(F) :=Pk(F),

where Pk(S) denotes the space of polynomials of total degree at most k in m variables on S

where S ⊂ R
m. The corresponding global spatial finite element spaces are given by

Wh :=
{

w ∈ L2(Ω )
∣∣ w|K ∈W (K) for all K ∈ Th

}
,

VVV h :=
{

zzz ∈ LLL2(Ω )
∣∣ zzz|K ∈VVV (K) for all K ∈ Th

}
,

Mh :=
{

µ ∈ L2(Eh)
∣∣ µ |F ∈ M(F) for all F ∈ Eh},

where LLL2(Ω ) := (L2(Ω ))d and L2(Eh) := ∏F∈Eh
L2(F) are defined in the usual way. On

these spaces we consider bilinear forms

(w,z)Th
:= ∑

K∈Th

(w,z)K := ∑
K∈Th

∫

K
w · zdxxx,

(www,zzz)Th
:= ∑

K∈Th

(www,zzz)K := ∑
K∈Th

∫

K
www · zzzdxxx,

〈η ,µ〉∂Th
:= ∑

K∈Th

〈η ,µ〉∂K := ∑
K∈Th

∫

∂K
ηµ ds,

and write ‖ · ‖Ω , ‖ · ‖K , ‖ · ‖∂Th
and ‖ · ‖∂K for the corresponding L2-norms.

We shall make use of the CGS projection originally introduced in [4], which is defined

element by element as follows:

Πh : L2(Ω )×LLL2(Ω )⊃ dom(Πh)→Wh ×VVV h, Πh(w,zzz) := (ΠW w,ΠΠΠVVV zzz),

where for any K ∈ Th and all edges/faces F of K the functions ΠW w and ΠΠΠVVV zzz satisfy

(ΠW w,φ)K = (w,φ)K for all φ ∈ Pk−1(K), (3a)

(ΠΠΠVVV zzz,ψψψ)K = (zzz,ψψψ)K for all ψψψ ∈Pk−1(K), (3b)

〈ΠΠΠVVV zzz ·nnn− τΠW w,µ〉F = 〈zzz ·nnn− τw,µ〉F for all µ ∈ Pk(F), (3c)

where τ : ∂Th → [0,∞) denotes a non-negative function that is assumed to be constant on

each edge/face of K ∈ Th such that τmax
K := maxτ |∂K > 0 for all K ∈ Th, and nnn is the outward

unit normal to K. The domain of definition domΠh of this projection is such that the right

hand sides of (3) are well defined. Note that in (3c) we use a different sign than in the original
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definition of the projection from [4]; this choice fits the structure of the numerical flux

introduced in Section 2.2 below. The following approximation properties of the projection

established in [4] remain true without changes: There exists a constant C independent of K

and τ such that

‖ΠW w−w‖K ≤Ch
ℓw+1
K |w|Hℓw+1(K)+C

h
ℓzzz+1
K

τmax
K

|∇·zzz|Hℓzzz (K), (4a)

‖ΠΠΠVVV zzz− zzz‖K ≤Ch
ℓzzz+1
K |zzz|

HHHℓzzz+1(K)+Ch
ℓw+1
K τ∗

K |w|Hℓw+1(K), (4b)

for ℓw, ℓzzz ∈ [0,k], where τ∗
K := maxτ |∂K\F∗ with F∗ being an edge/face of K at which τ |∂K

is maximum. Furthermore, as shown in Appendix A,

‖τ(ΠW w−w)‖∂K ≤Ch
1/2
K

(
h
ℓzzz

K |∇·zzz|Hℓzzz(K)+ τmax
K h

ℓw
K |w|Hℓw+1(K)

)
(4c)

for ℓw, ℓzzz ∈ [0,k]. Here Hs(S), s ≥ 0, and HHHs(S) := (Hs(S))d are the standard Sobolev spaces

on open domains S ⊂ R
d , and we denote the corresponding semi-norms and norms by

| · |Hs(S), | · |HHHs(S) and ‖ · ‖Hs(S), ‖ · ‖HHHs(S), respectively. Throughout C is a generic positive

constant, not necessarily the same at different occurrences.

We shall need in addition the L2-projection on the faces of the mesh PM : L2(∂Th)→ Mh

defined by

〈PMµ −µ ,η〉∂Th
= 0 for all η ∈ Mh. (5)

Of course, since Mh is a discontinuous space, this projection can be defined face by face.

2.2 Semi-discrete problem

The semi-discrete formulation of the method analyzed in this work consists in finding ap-

proximations vh(t) ∈Wh of v(t), ppph(t) ∈ VVV h of ppp(t) and a numerical trace v̂h(t) ∈ Mh ap-

proximating v(t) on Eh for t ∈ (0,T), which satisfy

(v̇h,φ)Th
=−(ppph,∇φ)Th

+ 〈 p̂pph ·nnn,φ〉∂Th
+( f ,φ)Th

, (6a)

( ṗpph,ψψψ)Th
=−(vh,∇·ψψψ)Th

+ 〈v̂h,ψψψ ·nnn〉∂Th
, (6b)

〈 p̂pph ·nnn,µ〉∂Th\∂Ω = 0, (6c)

〈v̂h,η〉∂Ω = 〈ġ,η〉∂Ω , (6d)

for all φ ∈Wh, ψψψ ∈VVV h and µ ,η ∈ Mh. Denoting by τ : ∂Th → [0,∞) a stabilization function

that is constant on each edge/face, satisfying τmax
K > 0 for all K ∈ Th as before, we consider

two possible methods corresponding to different numerical fluxes p̂pph:

– A dissipative method closely related to the elliptic theory (see also [16]) where the flux

is given by

p̂pph = ppph − τ(vh − v̂h)nnn on ∂Th. (7)

– A new non-dissipative method that does not reduce to the elliptic problem at steady state

where the flux is given by

p̂pph = ppph − τ(v̇h − ˙̂vh)nnn on ∂Th. (8)
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We first show the energy conservation properties of the two methods. Selecting φ = vh

in (6a) and ψψψ = ppph in (6b) we add the results and integrate by parts to obtain

1

2

d

dt

(
‖vh‖2

Ω +‖ppph‖2
Ω

)
= 〈 p̂pph ·nnn,vh〉∂Th

+( f ,vh)Th
+ 〈v̂h − vh, ppph ·nnn〉∂Th

.

Combining (6c) with µ = v̂h and (6d) with η = p̂pph ·nnn together with this equality we get

1

2

d

dt

(
‖vh‖2

Ω +‖ppph‖2
Ω

)
=−〈(ppph − p̂pph) ·nnn,vh − v̂h〉∂Th

+( f ,vh)Th
.

Proceeding first to the numerical flux (7) we find that

1

2

d

dt

(
‖vh‖2

Ω +‖ppph‖2
Ω

)
=−〈τ(v̂h − vh), v̂h − vh〉∂Th

,+( f ,vh)Th
.

i.e., if f = 0 this implies that

1

2

d

dt

(
‖vh‖2

Ω +‖ppph‖2
Ω

)
≤ 0,

and the method is generally dissipative.

On the other hand, using the numerical flux in (8) we obtain that

1

2

d

dt

(
‖vh‖2

Ω +‖ppph‖2
Ω + 〈τ(v̂h − vh), v̂h − vh〉∂Th

)
= ( f ,vh)Th

,

and the method is now non-dissipative provided the interface term is included in the energy.

2.3 Fully discrete problem

To discretize in time we consider a sequence of time steps

0 = t0 < t1 < t2 < · · ·< tN = T

where as before T > 0 is the final time for the integration. For 0 ≤ n ≤ N −1 we define

∆ tn := tn+1 − tn, In := (tn, tn+1), ∆ t := maxn ∆ tn, and for any q ≥ 1 we consider the discrete

spaces

S
(0)
q,∆ t := {ϕ ∈ H1((0,T)) | ϕ |In ∈ Pq(In), 0 ≤ n ≤ N −1},

S
(−1)
q−1,∆ t := {ϕ ∈ L2((0,T)) | ϕ |In ∈ Pq−1(In), 0 ≤ n ≤ N −1}.

Note that S
(−1)
q−1,∆ t is a discontinuous space, whereas S

(0)
q,∆ t is continuous (and one degree

higher). The fully discrete space-time finite element spaces for the method are then

W
(0)
h,∆ t := S

(0)
q,∆ t ⊗Wh, W

(−1)
h,∆ t := S

(−1)
q−1,∆ t ⊗Wh,

VVV
(0)
h,∆ t := S

(0)
q,∆ t ⊗VVV h, VVV

(−1)
h,∆ t := S

(−1)
q−1,∆ t ⊗VVV h,

M
(0)
h,∆ t := S

(0)
q,∆ t ⊗Mh, M

(−1)
h,∆ t := S

(−1)
q−1,∆ t ⊗Mh.

Now we state the discrete problem. For later reference we formulate it in terms of more

general right hand sides, which for the problem considered in this section are set to be
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Φ := f , ΓΓΓ := 0, Λ := 0 and Θ := ġ. We seek (vh,∆ t , ppph,∆ t , v̂h,∆ t) ∈ W
(0)
h,∆ t ×VVV

(0)
h,∆ t ×M

(0)
h,∆ t

such that

∫ T

0

[
(v̇h,∆ t ,φ)Th

+(ppph,∆ t ,∇φ)Th
−〈 p̂pph,∆ t ·nnn,φ〉∂Th

]
dt (9a)

=

∫ T

0

[
(Φ ,φ)Th

−〈Λ ,φ〉∂Th

]
dt,

∫ T

0

[
( ṗpph,∆ t ,ψψψ)Th

+(vh,∆ t ,∇·ψψψ)Th
−〈v̂h,∆ t ,ψψψ ·nnn〉∂Th

]
dt =

∫ T

0
(ΓΓΓ ,ψψψ)Th

dt, (9b)

∫ T

0
〈 p̂pph,∆ t ·nnn,µ〉∂Th\∂Ω dt =

∫ T

0
〈Λ ,µ〉∂Th\∂Ω dt, (9c)

∫ T

0
〈v̂h,∆ t ,η〉∂Ω dt =

∫ T

0
〈Θ ,η〉∂Ω dt, (9d)

for all φ ∈W
(−1)
h,∆ t , ψψψ ∈VVV

(−1)
h,∆ t and µ ,η ∈M

(−1)
h,∆ t , together with either the dissipative numerical

flux

p̂pph,∆ t = ppph,∆ t − τ(vh,∆ t − v̂h,∆ t)nnn on ∂Th (10)

corresponding to (7), or the non-dissipative numerical flux

p̂pph,∆ t = ppph,∆ t − τ(v̇h,∆ t − ˙̂vh,∆ t)nnn on ∂Th (11)

corresponding to (8). At the initial time we assume that

vh,∆ t(·,0) = ΠW v0 and ppph,∆ t(·,0) = ΠΠΠVVV ppp0,

and the initial condition for the interface variable is v̂h,∆ t(·,0) = PMv0|∂Th
. Other more con-

venient choices of initial data could be allowed at the cost of some extra details and terms

in the error estimate.

Note that by choosing the test functions to vanish except on a particular time interval

(which is possible because they are discontinuous) we can solve step-by-step in time (al-

though for q > 1 we have to solve a system of discrete problems). In any case, the fact

that we have an HDG system in space implies that we can reduce the problem at each step

to solving for the interface variables, i.e., for the scalar numerical trace v̂h,∆ t . This is an

attraction of HDG for higher order CG methods in time.

3 Preliminary estimates for stability and consistency

The convergence analysis for the two numerical fluxes will be handled in separate sections.

But some parts of the stability analysis are common to both arguments. This is the subject

of the present section.

We start by defining an L2-projection PS : L2(0,T )→ S
(−1)
q−1,∆ t for time dependent func-

tions such that on each subinterval In in time and for all ϕ ∈ L2(0,T)

∫ tn+1

tn

(PSϕ −ϕ)ϑ dt = 0 for all ϑ ∈ Pq−1(In). (12)
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This projection suffices to prove stability in the lowest order case when q = 1, but we need

another decomposition in order to provide stability between time steps for higher order

elements in time. Suppose γ ∈ Pq(In), then we write

γ = γ0 +
(t − tn)

∆ t
γ1, (13)

where γ0 ∈ Pq(In) and γ1 ∈ Pq−1(In) are such that

∫ tn+1

tn

γ0ϑ dt = 0 for all ϑ ∈ Pq−1(In). (14)

We have the following lemma guaranteeing the existence and stability of this decomposition.

Lemma 1 The decomposition (13) is well defined and in addition there is a constant C

independent of n, ∆ t and γ such that for each 0 ≤ n ≤ N −1,

‖γ1‖L2(In)
≤C‖γ‖L2(In)

(15)

for all γ ∈ Pq(In). The component γ0 satisfies

γ0(tn) = γ(tn) and γ2
0 (tn+1) = γ2(tn),

and there is a constant C independent of n, ∆ t and γ such that

‖γ0‖L2(In)
≤C∆ t1/2|γ(tn)|. (16)

Remark 1 A similar decomposition to (13) was used in [5] but in their case γ0 was taken

to be constant in time. This suffices for the first order derivative in time and second order

derivative in space formulation used there, but results in terms we cannot analyze for the

first order system considered here. Our choice avoids these terms and is motivated by the

analysis of [11–13] where a similar decomposition is constructed explicitly using Lagrange

basis functions at Gauss-Legendre points. Our goal is to simplify this analysis by avoiding

this explicit construction.

Proof The decomposition (13) is well defined because, using the orthogonality requirement

(14), γ1 ∈ Pq−1(In) satisfies

∫ tn+1

tn

(t − tn)

∆ t
γ1ϑ dt =

∫ tn+1

tn

γϑ dt for all ϑ ∈ Pq−1(In).

The left hand side of this equation defines a symmetric, bounded and coercive bilinear form

on Pq−1(In)×Pq−1(In) considered as subspaces of L2(In)×L2(In). So by the Lax-Milgram

lemma γ1 exists uniquely for each γ . Furthermore,

∥∥∥∥

√
t − tn

∆ t
γ1

∥∥∥∥
L2(In)

≤C‖γ‖L2(In)
.

Mapping to the reference interval [0,1], using the equivalence of norms on finite dimensional

vector spaces, and then mapping back to the given time interval establishes (15).

The fact that γ0(tn) = γ(tn) is obvious, and selecting ϑ = γ̇0 in (14) shows that

0 =

∫ tn+1

tn

γ0γ̇0 dt =
1

2

(
γ2

0 (tn+1)− γ2
0 (tn)

)
.
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By mapping to the reference interval,

‖γ0‖2
L2(In)

= ∆ t

∫ 1

0
γ2

0 (tn +∆ ts)ds.

Furthermore, denoting by πq the Legendre polynomial of degree q on [0,1], then in view

of the fact that Gauss-Legendre quadrature using q points is accurate for polynomials of

degree 2q−1, we see that the orthogonality requirement (14) is equivalent to the fact that γ0

vanishes at the shifted Legendre points. So

γ0(tn +∆ ts) =
γ(tn)

πq(0)
πq(s),

and thus,

‖γ0‖2
L2(In)

= ∆ t

( γ(tn)

πq(0)

)2
∫ 1

0
|πq(s)|2 ds = ∆ t

( γ(tn)

πq(0)

)2 1

2q+1
.

Since q is fixed, this gives (16). ⊓⊔

Given wh,∆ t ∈W
(0)
h,∆ t we use the decomposition (13) to write

wh,∆ t |In = w
(n)
0 +

(t − tn)

∆ t
w
(n)
1 for each 0 ≤ n ≤ N −1,

where w
(n)
0 ∈ Pq(In)⊗Wh and w

(n)
1 ∈ Pq−1(In)⊗Wh, and we note that corresponding de-

compositions of zzzh,∆ t ∈VVV
(0)
h,∆ t and ŵh,∆ t ∈ M

(0)
h,∆ t are given analogously. In the following

lemma we establish stability estimates for these decompositions. We write Sn := Th × In,

∂ Sn := ∂Th × In and denote by ‖ · ‖Sn := ‖ · ‖L2(In;L2(Ω)), ‖ · ‖Sn := ‖ · ‖L2(In;LLL2(Ω)) as well as

‖ · ‖∂Sn
:= ‖ · ‖L2(In;L2(∂Th))

the usual Bochner space norms. The result should be compared

to Lemma 2.1 of [12] and Lemma 3.4 of [13], where related estimates are given.

Lemma 2 Suppose wh,∆ t ∈W
(0)
h,∆ t , zzzh,∆ t ∈ VVV

(0)
h,∆ t and ŵh,∆ t ∈ M

(0)
h,∆ t . Then there is a constant

C independent of wh,∆ t , zzzh,∆ t , ŵh,∆ t , n, ∆ t and h such that for each 0 ≤ n ≤ N −1,

‖wh,∆ t‖2
Sn

≤C∆ t

(∫ tn+1

tn

(ẇh,∆ t ,w
(n)
1 )Th

dt +‖wh,∆ t(·, tn)‖2
Ω

)
, (17a)

‖zzzh,∆ t‖2
Sn

≤C∆ t

(∫ tn+1

tn

(żzzh,∆ t ,zzz
(n)
1 )Th

dt +‖zzzh,∆ t(·, tn)‖2
Ω

)
, (17b)

‖τ1/2(ŵh,∆ t −wh,∆ t)‖2
∂Sn

≤C∆ t
(∫ tn+1

tn

〈
τ( ˙̂wh,∆ t − ẇh,∆ t), ŵ1 −w1

〉
∂Th

dt

+‖τ1/2(ŵh,∆ t −wh,∆ t)(·, tn)‖2
∂Th

)
. (17c)

Proof We only prove (17a) and note that (17b) and (17c) follow analogously. By the defini-

tion of w
(n)
0 and w

(n)
1 and integration by parts

∫ tn+1

tn

(ẇh,∆ t ,w
(n)
1 )Th

dt

=

∫ tn+1

tn

[
(ẇ

(n)
0 ,w

(n)
1 )Th

+
1

∆ t

(
‖w

(n)
1 ‖2

Ω +(t − tn)(ẇ
(n)
1 ,w

(n)
1 )Th

)]
dt

=

∫ tn+1

tn

(ẇ
(n)
0 ,w

(n)
1 )Th

dt +
1

2∆ t
‖w

(n)
1 ‖2

Sn
+

1

2
‖w

(n)
1 (·, tn+1)‖2

Ω .

(18)
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The Cauchy-Schwarz inequality, an inverse inequality in time and (16) give

∣∣∣
∫ tn+1

tn

(ẇ
(n)
0 ,w

(n)
1 )Th

dt

∣∣∣≤ ‖ẇ
(n)
0 ‖Sn‖w

(n)
1 ‖Sn ≤

C

∆ t
‖w

(n)
0 ‖Sn‖w

(n)
1 ‖Sn

≤ C

∆ t1/2
‖wh,∆ t(·, tn)‖Ω‖w

(n)
1 ‖Sn .

Hence, applying the arithmetic geometric mean inequality,

∣∣∣
∫ tn+1

tn

(ẇ
(n)
0 ,w

(n)
1 )Th

dt

∣∣∣≤C‖wh,∆ t(·, tn)‖2
Ω +

1

4∆ t
‖w

(n)
1 ‖2

Sn
,

and using this inequality in (18) gives

∫ tn+1

tn

(ẇh,∆ t ,w
(n)
1 )Th

dt ≥ 1

4∆ t
‖w

(n)
1 ‖2

Sn
+

1

2
‖w

(n)
1 (·, tn+1)‖2

Ω −C‖wh,∆ t(·, tn)‖2
Ω .

However direct estimation recalling the fact that 0 ≤ (t− tn)/∆ t ≤ 1 on In together with (16)

shows that

‖wh,∆ t‖2
Sn

≤C
(
‖w

(n)
0 ‖2

Sn
+‖w

(n)
1 ‖2

Sn

)
≤C

(
∆ t‖wh,∆ t(·, tn)‖2

Ω +‖w
(n)
1 ‖2

Sn

)
.

Combining these inequalities yields (17a). ⊓⊔

When proving consistency, we shall use a generalized interpolant PL : H1((0,T))→ S
(0)
q,∆ t

related to interpolation at the Gauss-Lobatto points (see [13] where an explicit Gauss-

Lobatto interpolant is used) defined on the interval [tn, tn+1] by

(PLϕ)(tn) = ϕ(tn), (PLϕ)(tn+1) = ϕ(tn+1), (19a)
∫ tn+1

tn

(PLϕ −ϕ)(t)ϑ (t)dt = 0 for all ϑ ∈ Pq−2(In). (19b)

This is a standard generalization of the interpolant and has the following properties.

Lemma 3 The operator PL is well defined for ϕ ∈ H1(0,T) and if ϕ ∈ Hq+1(In) then

‖ϕ −PLϕ‖L2(In)
≤C∆ tq+1‖ϕ‖Hq+1(In)

. (20)

In addition, for all ϑ ∈ Pq−1(In)

∫ tn+1

tn

d

dt
(PLϕ)ϑ dt =

∫ tn+1

tn

ϕ̇ϑ dt. (21)

Proof The existence of PL is well-known and follows from unisolvence, and the error esti-

mate can be proved using the Bramble-Hilbert lemma [2]. The useful property (21) can be

shown as follows. If ϑ ∈ Pq−1(In), using partial integration and the end point interpolation

and orthogonality properties of the interpolant,

∫ tn+1

tn

d

dt
(PLϕ)ϑ dt = (PLϕϑ )|tn+1

tn −
∫ tn+1

tn

(PLϕ)ϑ̇ dt =
∫ tn+1

tn

ϕ̇ϑ dt.

⊓⊔
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4 Analysis of the dissipative scheme

In this section we analyze the CTG-HDG method (9) assuming that the numerical flux p̂pph,∆ t

is given by (10).

4.1 Stability analysis for the dissipative scheme

We now suppose that F ∈ L2((0,T);L2(Ω )) and GGG ∈ L2((0,T);LLL2(Ω )) and prove the fol-

lowing result which provides local stability estimates for the dissipative scheme:

Theorem 1 Let (wh,∆ t ,zzzh,∆ t , ŵh,∆ t) ∈ W
(0)
h,∆ t ×VVV

(0)
h,∆ t ×M

(0)
h,∆ t satisfy (9)-(10) with Φ = F,

ΓΓΓ = GGG, Λ = 0, and Θ = 0 for all φ ∈ W
(−1)
h,∆ t , ψψψ ∈ VVV

(−1)
h,∆ t and µ ,η ∈ M

(−1)
h,∆ t . Then for each

0 ≤ n ≤ N −1,

‖wh,∆ t(·, tn+1)‖2
Ω +‖zzzh,∆ t(·, tn+1)‖2

Ω ≤ ‖wh,∆ t(·, tn)‖2
Ω +‖zzzh,∆ t(·, tn)‖2

Ω

+2

∫ tn+1

tn

[
(F,PSwh,∆ t)Th

+(GGG,PSzzzh,∆ t)Th

]
dt, (22a)

and assuming that ∆ t is small enough, there is a constant C independent of n, ∆ t and h as

well as F and GGG such that

‖wh,∆ t‖2
Sn
+‖zzzh,∆ t‖2

Sn
≤C∆ t

(
‖wh,∆ t(·, tn)‖2

Ω +‖zzzh,∆ t(·, tn)‖2
Ω +‖F‖2

Sn
+‖GGG‖2

Sn

)
. (22b)

Proof Since the test functions are discontinuous in time we can consider a single time sub-

interval In and first choose φ = PSwh,∆ t and ψψψ = PSzzzh,∆ t , where PS is the L2-projection

from (12). Then adding (9a) and (9b) with Φ = F , ΓΓΓ = GGG and Λ = 0 gives

∫ tn+1

tn

[
(ẇh,∆ t ,PSwh,∆ t)Th

+(żzzh,∆ t ,PSzzzh,∆ t)Th

]
dt

=

∫ tn+1

tn

[
−(zzzh,∆ t ,∇PSwh,∆ t)Th

+ 〈̂zzzh,∆ t ·nnn,PSwh,∆ t〉∂Th

]
dt

+

∫ tn+1

tn

[
−(wh,∆ t ,∇·PSzzzh,∆ t)Th

+ 〈ŵh,∆ t ,PSzzzh,∆ t ·nnn〉∂Th

]
dt

+
∫ tn+1

tn

[
(F,PSwh,∆ t)Th

+(GGG,PSzzzh,∆ t)Th

]
dt.

Using the fact that PS is a projection, integrating by parts and applying the definition of the

numerical flux (10) we have

∫ tn+1

tn

[
(ẇh,∆ t ,wh,∆ t)Th

+(żzzh,∆ t ,zzzh,∆ t)Th

]
dt =

∫ tn+1

tn

〈τPS(ŵh,∆ t −wh,∆ t),PSwh,∆ t〉∂Th
dt

+

∫ tn+1

tn

〈PS ŵh,∆ t ,PSzzzh,∆ t ·nnn〉∂Th
dt +

∫ tn+1

tn

[
(F,PSwh,∆ t)Th

+(GGG,PSzzzh,∆ t)Th

]
dt.

(23)

Choosing µ = PS ŵh,∆ t in (9c) with Λ = 0, η = PS ẑzzh,∆ t · nnn in (9d) with Θ = 0, using these

identities together with the definition of the numerical flux (10) in (23) and integrating in
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time shows that

‖wh,∆ t(·, tn+1)‖2
Ω +‖zzzh,∆ t(·, tn+1)‖2

Ω

+2

∫ tn+1

tn

〈τPS(ŵh,∆ t −wh,∆ t),PS(ŵh,∆ t −wh,∆ t)〉∂Th
dt

= ‖wh,∆ t(·, tn)‖2
Ω +‖zzzh,∆ t(·, tn)‖2

Ω +2

∫ tn+1

tn

[
(F,PSwh,∆ t)Th

+(GGG,PSzzzh,∆ t)Th

]
dt.

This implies (22a).

Next we choose φ = w
(n)
1 and ψψψ = zzz

(n)
1 in (9a) and (9b). Then adding these equations

gives
∫ tn+1

tn

[
(ẇh,∆ t ,w

(n)
1 )Th

+(żzzh,∆ t ,zzz
(n)
1 )Th

]
dt

=
∫ tn+1

tn

[
−(zzzh,∆ t ,∇w

(n)
1 )Th

+ 〈̂zzzh,∆ t ·nnn,w(n)
1 〉∂Th

]
dt

+
∫ tn+1

tn

[
−(wh,∆ t ,∇·zzz(n)1 )Th

+ 〈ŵh,∆ t ,zzz
(n)
1 ·nnn〉∂Th

]
dt

+

∫ tn+1

tn

[
(F,w

(n)
1 )Th

+(GGG,zzz
(n)
1 )Th

]
dt.

(24)

Using the orthogonality property (14), letting ξ (n) := (t − tn)/∆ t , and integrating by parts,

∫ tn+1

tn

(zzzh,∆ t ,∇w
(n)
1 )Th

dt =
∫ tn+1

tn

(zzz
(n)
0 +ξ (n)zzz

(n)
1 ,∇w

(n)
1 )Th

dt

=
∫ tn+1

tn

[
〈ξ (n)zzz

(n)
1 ·nnn,w(n)

1 〉∂Th
− (ξ (n) ∇·zzz(n)1 ,w

(n)
1 )Th

]
dt.

Thus, applying again the orthogonality property (14) together with this identity in (24) gives
∫ tn+1

tn

[
(ẇh,∆ t ,w

(n)
1 )Th

+(żzzh,∆ t ,zzz
(n)
1 )Th

]
dt

=

∫ tn+1

tn

[
〈ξ (n)ŵ

(n)
1 ,zzz

(n)
1 ·nnn〉∂Th

−〈ξ (n)(zzz
(n)
1 − ẑzz

(n)
1 ) ·nnn,w(n)

1 〉∂Th

]
dt

+

∫ tn+1

tn

[
(F,w

(n)
1 )Th

+(GGG,zzz
(n)
1 )Th

]
dt.

Proceeding as before using (9c) and (9d) together with (10) we obtain
∫ tn+1

tn

[
(ẇh,∆ t ,w

(n)
1 )Th

+(żzzh,∆ t ,zzz
(n)
1 )Th

]
dt +

∫ tn+1

tn

〈τξ (n)(w
(n)
1 − ŵ

(n)
1 ),w

(n)
1 − ŵ

(n)
1 〉∂Th

dt

=

∫ tn+1

tn

[
(F,w

(n)
1 )Th

+(GGG,zzz
(n)
1 )Th

]
dt. (25)

Now combining (17a), (17b) and (25) we have

‖wh,∆ t‖2
Sn
+‖zzzh,∆ t‖2

Sn
≤C∆ t

(∣∣∣
∫ tn+1

tn

(F,w
(n)
1 )Th

dt

∣∣∣

+
∣∣∣
∫ tn+1

tn

(GGG,zzz
(n)
1 )Th

dt

∣∣∣+‖wh,∆ t(·, tn)‖2
Ω +‖zzzh,∆ t(·, tn)‖2

Ω

)
.

Using the Cauchy-Schwarz inequality, the arithmetic geometric mean inequality and (15)

shows (22b), provided ∆ t is small enough. ⊓⊔
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Using this theorem we have the following corollary giving stability bounds on the solu-

tion of (9)-(10) with Φ = F, ΓΓΓ = GGG, Λ = 0, and Θ = 0:

Corollary 1 Let (wh,∆ t ,zzzh,∆ t , ŵh,∆ t) ∈ W
(0)
h,∆ t ×VVV

(0)
h,∆ t ×M

(0)
h,∆ t satisfy (9)-(10) with Φ = F,

ΓΓΓ = GGG, Λ = 0, Θ = 0 and zero initial data for all φ ∈W
(−1)
h,∆ t , ψψψ ∈VVV

(−1)
h,∆ t and µ ,η ∈ M

(−1)
h,∆ t .

(i) Provided ∆ t is small enough, the following estimates hold for each 0 ≤ n ≤ N −1 and

C independent of ∆ t, n, h as well as F and GGG:

‖wh,∆ t(·, tn+1)‖2
Ω +‖zzzh,∆ t(·, tn+1)‖2

Ω ≤ (Ctn+1 +1)
n

∑
m=0

(
‖F‖2

Sm
+‖GGG‖2

Sm

)
, (26a)

‖wh,∆ t‖2
Sn
+‖zzzh,∆ t‖2

Sn
≤C∆ t(Ctn +1)

n

∑
m=0

(
‖F‖2

Sm
+‖GGG‖2

Sm

)
. (26b)

(ii) Assuming that ∆ t is small enough and that τ > 0 on ∂Th, the discrete problem (9)-(10)

has a unique solution.

Proof Assuming zero initial data we find from (22a) together with the algebraic arithmetic

mean inequality and (22b) that for any δ > 0

‖wh,∆ t(·, tn+1)‖2
Ω +‖zzzh,∆ t(·, tn+1)‖2

Ω

≤
n

∑
m=0

[ 1

δ

(
‖F‖2

Sm
+‖GGG‖2

Sm

)
+δ

(
‖wh,∆ t‖2

Sm
+‖zzzh,∆ t‖2

Sm

)]

≤
n

∑
m=0

[( 1

δ
+δC∆ t

)(
‖F‖2

Sm
+‖GGG‖2

Sm

)
+δC∆ t

(
‖wh,∆ t(·, tm)‖2

Ω +‖zzzh,∆ t(·, tm)‖2
Ω

)]
.

Denoting

‖wh,∆ t(·, tm∗)‖2
Ω +‖zzzh,∆ t(·, tm∗)‖2

Ω := max
0≤m≤n+1

(
‖wh,∆ t(·, tm)‖2

Ω +‖zzzh,∆ t(·, tm)‖2
Ω

)
,

and choosing δ = 1/(2Ctm∗), we find that

1

2

(
‖wh,∆ t(·, tm∗)‖2

Ω +‖zzzh,∆ t(·, tm∗)‖2
Ω

)
≤

m∗−1

∑
m=0

(
2Ctm∗ +

1

2

)(
‖F‖2

Sm
+‖GGG‖2

Sm

)
.

This implies (26a), and (26b) follows from (22b).

To prove unique solvability of (9)–(10) at each time step it suffices to show that wh,∆ t ,

zzzh,∆ t and ŵh,∆ t are zero on In assuming that the right hand sides and the approximation of

the solution at time step tn, i.e., wh,∆ t(·, tn), zzzh,∆ t(·, tn) and ŵh,∆ t(·, tn) vanish (since the linear

system is square). However, this follows immediately from (22), (25) and (17c). ⊓⊔

4.2 Consistency and convergence of the dissipative scheme

In this section we determine the consistency error for the dissipative scheme. To this end

we study the projected errors ev := PLΠW v− vh,∆ t and eeeppp := PLΠΠΠVVV ppp− ppph,∆ t , where PL is

the Lobatto interpolant from (19) and (ΠW ,ΠΠΠVVV ) the projection introduced in (3). We also

set êv := PLPMv− v̂h,∆ t on the faces of the mesh, applying the L2-projection from (5). The

following theorem shows that these discrete functions satisfy (9)-(10).
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Theorem 2 Setting wh,∆ t = ev, zzzh,∆ t = eeeppp, ŵh,∆ t = êv and

ẑzzh,∆ t = êeeppp := eeeppp − τ(ev − êv)nnn on ∂Th

the equations (9)-(10) with Φ = F, ΓΓΓ = GGG, Λ = 0, and Θ = 0 are satisfied for all φ ∈W
(−1)
h,∆ t ,

ψψψ ∈VVV
(−1)
h,∆ t and µ ,η ∈ M

(−1)
h,∆ t , provided that

F = ΠW v̇− v̇− (PL ∇· ppp−∇· ppp) and GGG = ΠΠΠVVV ṗpp− ṗpp− (PL ∇v−∇v).

Proof Starting with (9b) we can proceed time step by time step using the orthogonality

properties of ΠW and ΠΠΠVVV stated in (3a)–(3b) and the fact that (9b) (with ΓΓΓ = 0) and (2b) are

satisfied by the discrete and continuous solution, respectively, to show that for all ψψψ ∈VVV
(−1)
h,∆ t ,

∫ tn+1

tn

[
(ėeeppp,ψψψ)Th

+(ev,∇·ψψψ)Th
−〈êv,ψψψ ·nnn〉∂Th

]
dt

=
∫ tn+1

tn

[( ∂

∂ t
PLΠΠΠVVV ppp,ψψψ

)
Th

+(PLv,∇·ψψψ)Th
−〈êv,ψψψ ·nnn〉∂Th

]
dt

−
∫ tn+1

tn

〈v̂h,∆ t ,ψψψ ·nnn〉∂Th
dt −

∫ tn+1

tn

( ṗpp−∇v,ψψψ)Th
dt.

Now using the projection property of the Lobatto interpolant (21) and integration by parts

we have

∫ tn+1

tn

[
(ėeeppp,ψψψ)Th

+(ev,∇·ψψψ)Th
−〈êv,ψψψ ·nnn〉∂Th

]
dt

=
∫ tn+1

tn

[
(ΠΠΠVVV ṗpp− ṗpp,ψψψ)Th

− (PL ∇v−∇v,ψψψ)Th

]
dt −

∫ tn+1

tn

〈êv −PLv+ v̂h,∆ t ,ψψψ ·nnn〉∂Th
dt.

But recalling the definition of êv and the projection PM we have

〈êv −PLv+ v̂h,∆ t ,ψψψ ·nnn〉∂Th
= 0

and we conclude that (9b) is satisfied with ΓΓΓ = GGG as required.

Using the same arguments we can show that for all φ ∈W
(−1)
h,∆ t ,

∫ tn+1

tn

[
(ėv,φ)Th

+(eeeppp,∇φ)Th
−〈êeev ·nnn,φ〉∂Th

]
dt (27)

=
∫ tn+1

tn

[
(ΠW v̇− v̇,φ)Th

− (PL ∇· ppp−∇· ppp,φ)Th

]
dt −

∫ tn+1

tn

〈(êeev + p̂pph,∆ t −PL ppp) ·nnn,φ〉∂Th
dt.

Recalling the definition of êeeppp,

êeeppp ·nnn = PLΠΠΠVVV ppp ·nnn− τ(PLΠW v−PLPMv)− p̂pph,∆ t ·nnn. (28)

Therefore,

∫ tn+1

tn

〈(êeeppp + p̂pph,∆ t −PL ppp) ·nnn,φ〉∂Th
dt

=
∫ tn+1

tn

〈(PLΠΠΠVVV ppp−PL ppp) ·nnn− τ(PLΠW v−PLv),φ〉∂Th
dt = 0,
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where we applied (3c). Using this in (27) shows that (9a) is satisfied provided Φ = F is

chosen as in the theorem.

Next, (28), (3c) and (9c) (with Λ = 0) imply that for all µ ∈ M
(−1)
h,∆ t ,

∫ tn+1

tn

〈êeeppp ·nnn,µ〉∂Th\∂Ω dt =

∫ tn+1

tn

〈PL(ppp ·nnn− τ(v− v)),µ〉∂Th\∂Ω dt = 0,

which shows that êeeppp satisfies (9c) (with Λ = 0). Finally, for all η ∈ M
(−1)
h,∆ t , we obtain from

(1b) and (9d) (with Θ = ġ) that
∫ tn+1

tn

〈êv,η〉∂Ω dt =
∫ tn+1

tn

〈PL(PMv− v)+PLv− v̂h,∆ t ,η〉∂Ω dt = 0.

This shows that êv satisfies (9d) (with Θ = 0) and completes the proof. ⊓⊔
It will also be useful to have estimates of the consistency error, which follow immedi-

ately from (4a), (4b) and (20).

Lemma 4 Assuming sufficient regularity on the solution (as indicated by the norms on the

right hand side of the following inequalities), the consistency error terms in Theorem 2 are

bounded as follows: For each 0 ≤ n ≤ N −1,

‖F‖Sn = ‖(ΠW v̇− v̇)− (PL ∇· ppp−∇· ppp)‖Sn

≤C

[
hℓv+1‖v̇‖L2(In;Hℓv+1(Ω))+

hℓppp+1

minK τmax
K

‖∇· ṗpp‖
L2(In;Hℓppp+1(Ω))+∆ tq+1

n ‖∇· ppp‖Hq+1(In;L2(Ω))

]
,

‖GGG‖Sn = ‖(ΠΠΠVVV ṗpp− ṗpp)− (PL ∇v−∇v)‖Sn

≤C

[
hℓppp+1‖ṗpp‖

L2(In;HHHℓppp+1(Ω))+hℓv+1 max
K

τv∗K‖v̇‖L2(In;Hℓv+1(Ω))+∆ tq+1
n ‖∇v‖Hq+1(In;LLL2(Ω))

]
,

for ℓv, ℓppp ∈ [0,k].

Using Corollary 1 and Theorem 2 together with Lemma 4 we have the following con-

vergence result:

Theorem 3 Suppose ∆ t is sufficiently small, and that the solution (v, ppp) of the mixed hy-

perbolic problem (2) is sufficiently smooth in space and time that the estimates of Lemma 4

can be applied. In addition suppose vh,∆ t , ppph,∆ t and v̂h,∆ t satisfy the CTG-HDG problem (9)

using the dissipative numerical flux (10) with τ =O(1) and the initial conditions

vh,∆ t(·,0) = ΠW v0 and ppph,∆ t(·,0) = ΠΠΠVVV ppp0 in Ω

and v̂h,∆ t(·,0) = PMv0|∂Th
on ∂Th. Then the following error estimate holds:

max
0≤n≤N

(
‖v(·, tn)− vh,∆ t(·, tn)‖Ω+‖ppp(·, tn)− ppph,∆ t(·, tn)‖Ω

)

≤CT 1/2
(
hℓv+1M1(T)+hℓppp+1M2(T)+∆ tq+1M3(T )

)
,

‖v− vh,∆ t‖L2([0,T ];L2(Ω))+‖ppp− ppph,∆ t‖L2([0,T ];LLL2(Ω))

≤CT
(
hℓv+1M1(T)+hℓppp+1M2(T)+∆ tq+1M3(T)

)
,

for ℓv, ℓppp ∈ [0,k], where

M1(T )≤ ‖v̇‖L2([0,T ];Hℓv+1(Ω)),

M2(T )≤ ‖ṗpp‖
L2([0,T ];HHHℓppp+1(Ω))+‖∇· ṗpp‖

L2([0,T ];Hℓppp+1(Ω)),

M3(T )≤ ‖∇v‖Hq+1([0,T ];LLL2(Ω))+‖∇· ppp‖Hq+1([0,T ];L2(Ω)).



16 R. Griesmaier, P. Monk

5 Analysis of the non-dissipative scheme

This section contains the error analysis of the CTG-HDG scheme (9) together with the non-

dissipative numerical flux from (11). Since the reasoning is similar to that in Section 4, we

do not include all details and refer to that section instead whenever appropriate.

5.1 Stability of the non-dissipative scheme

Let F ∈ L2((0,T);L2(Ω )), GGG ∈ L2((0,T);LLL2(Ω )) and H ∈ L2((0,T);L2(∂Th)). Similar to

Theorem 1 we obtain the following local stability estimates for the non-dissipative scheme.

Theorem 4 Suppose (wh,∆ t ,zzzh,∆ t , ŵh,∆ t) ∈ W
(0)
h,∆ t ×VVV

(0)
h,∆ t ×M

(0)
h,∆ t satisfy (9) and (11) with

Φ = F, ΓΓΓ = GGG, Λ = H, and Θ = 0 for all φ ∈W
(−1)
h,∆ t , ψψψ ∈ VVV

(−1)
h,∆ t and µ ,η ∈ M

(−1)
h,∆ t . Then,

for each 0 ≤ n ≤ N −1,

‖wh,∆ t(·, tn+1)‖2
Ω +‖zzzh,∆ t(·, tn+1)‖2

Ω +‖τ1/2(ŵh,∆ t −wh,∆ t)(·, tn+1)‖2
∂Th

= ‖wh,∆ t(·, tn)‖2
Ω +‖zzzh,∆ t(·, tn)‖2

Ω +‖τ1/2(ŵh,∆ t −wh,∆ t)(·, tn)‖2
∂Th

+2

∫ tn+1

tn

[
(F,PSwh,∆ t)Th

+(GGG,PSzzzh,∆ t)Th

]
dt +2

∫ tn+1

tn

〈H,PS(ŵh,∆ t −wh,∆ t)〉∂Th
dt,

(29a)

and assuming that ∆ t is small enough, there is a constant C independent of n, ∆ t and h as

well as F, GGG and H such that

‖wh,∆ t‖2
Sn
+‖zzzh,∆ t‖2

Sn
+‖τ1/2(ŵh,∆ t −wh,∆ t)‖2

∂Sn

≤C∆ t
(
‖F‖2

Sn
+‖GGG‖2

Sn
+‖τ−1/2H‖2

∂Sn

+‖wh,∆ t(·, tn)‖2
Ω +‖zzzh,∆ t(·, tn)‖2

Ω +‖τ1/2(ŵh,∆ t −wh,∆ t)(·, tn)‖2
∂Th

)
. (29b)

Proof As in the proof of Theorem 1 we consider a single time interval In and first choose

test functions φ = PSwh,∆ t , ψψψ = PSzzzh,∆ t , µ = PS ŵh,∆ t and η = PS ẑzzh,∆ t ·nnn. Adding (9a) and

(9b) (with Φ = F and ΓΓΓ =GGG and Λ =H), integrating by parts, using (11), (9c) (with Λ =H)

and (9d) (with Θ = 0) we find that

∫ tn+1

tn

[
(ẇh,∆ t ,wh,∆ t)Th

+(żzzh,∆ t ,zzzh,∆ t)Th

]
dt =−

∫ tn+1

tn

〈τ( ˙̂wh,∆ t − ẇh,∆ t), ŵh,∆ t −wh,∆ t〉∂Th
dt

+
∫ tn+1

tn

[
(F,PSwh,∆ t)Th

+(GGG,PSzzzh,∆ t)Th

]
dt +

∫ tn+1

tn

〈H,PS(ŵh,∆ t −wh,∆ t)〉∂Th
dt.

Integrating in time gives (29a).

Next we choose φ =w
(n)
1 , ψψψ = zzz

(n)
1 , µ = ŵ

(n)
1 and η = ẑzz

(n)
1 ·nnn and write ξ (n) := (t − tn)/∆ t.

Adding (9a) and (9b), integrating by parts, using the orthogonality property (14), recalling

(11), (9c) and (9d) gives

∫ tn+1

tn

[
(ẇh,∆ t ,w

(n)
1 )Th

+(żzzh,∆ t ,zzz
(n)
1 )Th

]
dt +

∫ tn+1

tn

〈τ( ˙̂wh,∆ t − ẇh,∆ t), ŵ
(n)
1 −w

(n)
1 〉∂Th

dt

=

∫ tn+1

tn

[
(F,w

(n)
1 )Th

+(GGG,zzz
(n)
1 )Th

+ 〈H, ŵ
(n)
1 −w

(n)
1 〉∂Th

]
dt.

(30)
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Combining (17) and (30) yields

‖wh,∆ t‖2
Sn
+‖zzzh,∆ t‖2

Sn
+‖τ1/2(ŵh,∆ t −wh,∆ t)‖2

∂Sn

≤C∆ t

(∣∣∣
∫ tn+1

tn

(F,w
(n)
1 )Th

dt

∣∣∣+
∣∣∣
∫ tn+1

tn

(GGG,zzz
(n)
1 )Th

dt

∣∣∣+
∣∣∣
∫ tn+1

tn

〈H, ŵ
(n)
1 −w

(n)
1 〉∂Th

dt

∣∣∣

+‖wh,∆ t(·, tn)‖2
Ω +‖zzzh,∆ t(·, tn)‖2

Ω +‖τ1/2(ŵh,∆ t −wh,∆ t)(·, tn)‖2
∂Th

)
.

Using the Cauchy-Schwarz inequality, the arithmetic geometric mean inequality and (15)

shows that (29b) holds, provided ∆ t is small enough. ⊓⊔

As in Section 4.1, this theorem immediately yields stability bounds on the solution of

(9) and (11) with Φ = F , ΓΓΓ = GGG, Λ = H, and Θ = 0:

Corollary 2 Suppose (wh,∆ t ,zzzh,∆ t , ŵh,∆ t) ∈ W
(0)
h,∆ t ×VVV

(0)
h,∆ t ×M

(0)
h,∆ t satisfy (9) and (11) with

Φ = F, ΓΓΓ = GGG, Λ = H, Θ = 0 and zero initial data for all φ ∈ W
(−1)
h,∆ t , ψψψ ∈ VVV

(−1)
h,∆ t and

µ ,η ∈ M
(−1)
h,∆ t .

(i) Provided that ∆ t is small enough, the following estimates hold for each 0 ≤ n ≤ N −1

and C independent of ∆ t, n and h as well as F, GGG and H:

‖wh,∆ t(·, tn+1)‖2
Ω+‖zzzh,∆ t(·, tn+1)‖2

Ω +‖τ1/2(ŵh,∆ t −wh,∆ t)(·, tn+1)‖2
∂Th

(31a)

≤ (Ctn+1 +1)
n

∑
m=0

(
‖F‖2

Sm
+‖GGG‖2

Sm
+‖τ−1/2H‖2

∂Sm

)
,

‖wh,∆ t‖2
Sn
+‖zzzh,∆ t‖2

Sn
+‖τ1/2(ŵh,∆ t −wh,∆ t)‖2

∂Sn
(31b)

≤C∆ t(Ctn +1)
n

∑
m=0

(
‖F‖2

Sm
+‖GGG‖2

Sm
+‖τ−1/2H‖2

∂Sm

)
.

(ii) Assuming that ∆ t is small enough and that τ > 0 on ∂Th, the discrete problem (9)

together with (11) has a unique solution.

Proof The proof of part (i) is analogous to that of part (i) of Corollary 1 and is therefore

omitted. Unique solvability of (9) together with (11) at each time step follows from (29). ⊓⊔

5.2 Consistency and convergence of the non-dissipative scheme

As in Section 4.2 we consider the projected errors ev := PLΠW v− vh,∆ t , eeeppp := PLΠΠΠVVV ppp− ppph,∆ t

and êv := PLPMv− v̂h,∆ t .

Theorem 5 Setting wh,∆ t = ev, zzzh,∆ t = eeeppp, ŵh,∆ t = êv and

ẑzzh,∆ t = êeeppp := eeeppp − τ(ėv − ˙̂ev)nnn on ∂Th

the equations (9) and (11) with Φ = F, ΓΓΓ = GGG, Λ = H, and Θ = 0 are satisfied for all

φ ∈W
(−1)
h,∆ t , ψψψ ∈VVV

(−1)
h,∆ t and µ ,η ∈ M

(−1)
h,∆ t , provided that

F = ΠW v̇− v̇− (PL ∇· ppp−∇· ppp),

GGG = ΠΠΠVVV ṗpp− ṗpp− (PL∇v−∇v),

H = τPL(ΠW v− v)− τ(ΠW v̇− v̇).
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Proof Proceeding time step by time step it can be seen as in the proof of Theorem 2 that

(9b) is satisfied with ΓΓΓ = GGG as required, and that (27) holds for all φ ∈W
(−1)
h,∆ t . Since

êeeppp ·nnn = PLΠΠΠVVV ppp ·nnn− τ
∂

∂ t
(PLΠW v−PLPMv)− p̂pph,∆ t ·nnn, (32)

we find using (21) and (3c) that

∫ tn+1

tn

〈(êeeppp + p̂pph,∆ t −PL ppp) ·nnn,φ〉∂Th
dt

=
∫ tn+1

tn

[
〈τPL(ΠW v− v),φ〉∂Th

−〈τ(ΠW v̇− v̇),φ〉∂Th

]
dt.

Combining this with (27) shows that (9a) is satisfied provided Φ = F and Λ = H are chosen

as in the theorem.

Using (32), (3c), (21) and (9c) (with Λ = 0), it follows that for all µ ∈ M
(−1)
h,∆ t

∫ tn+1

tn

〈êeeppp ·nnn,µ〉∂Th\∂Ω dt =

∫ tn+1

tn

[
〈τPL(ΠW v− v),µ〉∂Th\∂Ω −〈τ(ΠW v̇− v̇),µ〉∂Th\∂Ω

]
dt,

which yields (9c), and (9d) follows by the same argument used at the end of the proof of

Theorem 2. ⊓⊔

In addition to the bounds of Lemma 4 we have the following estimate for the consistency

error on the mesh skeleton, which follows from (4c) and the continuity of PL.

Lemma 5 Assuming sufficient regularity on the solution (as indicated by the norms on the

right hand side of the following inequality), the consistency error term on the mesh skeleton

in Theorem 5 is bounded as follows: For each 0 ≤ n ≤ N −1,

‖H‖∂Sn
= ‖τPL(ΠW v− v)− τ(ΠW v̇− v̇)‖∂Sn

≤Ch1/2
[
hℓppp‖∇· ppp‖

H1(In;Hℓppp (Ω))+max
K

τmax
K hℓv‖v‖H1(In;Hℓv+1(Ω))

]

for ℓv, ℓppp ∈ [0,k].

Combining Corollary 2 and Theorem 5 together with Lemma 4 and Lemma 5 yields the

following convergence result:

Theorem 6 Suppose ∆ t is sufficiently small, and that the solution (v, ppp) of the mixed hyper-

bolic problem (2) is sufficiently smooth in space and time that the estimates of Lemma 4 and

Lemma 5 can be applied. In addition suppose vh,∆ t , ppph,∆ t and v̂h,∆ t satisfy the CTG-HDG

problem (9) using the non-dissipative numerical flux (11) with the initial conditions

vh,∆ t(·,0) = ΠW v0 and ppph,∆ t(·,0) = ΠΠΠVVV ppp0 in Ω

and v̂h,∆ t(·,0) = PMv0|∂Th
on ∂Th. Then the following error estimate holds:

max
0≤n≤N

(
‖v(·, tn)−vh,∆ t(·, tn)‖Ω +‖ppp(·, tn)− ppph,∆ t(·, tn)‖Ω

)

≤CT 1/2
(
hℓv+1/2M1(T )+hℓppp+1/2M2(T)+∆ tq+1M3(T)

)
,

‖v− vh,∆ t‖L2([0,T ];L2(Ω))+‖ppp− ppph,∆ t‖L2([0,T ];LLL2(Ω))

≤CT
(
hℓv+1/2M1(T)+hℓppp+1/2M2(T )+∆ tq+1M3(T)

)
,
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for ℓv, ℓppp ∈ [0,k], where

M1(T )≤ ‖v‖H1([0,T ];Hℓv+1(Ω)),

M2(T )≤ ‖∇· ppp‖
H1([0,T ];Hℓppp+1(Ω))+h1/2‖ṗpp‖

L2([0,T ];HHHℓppp+1(Ω)),

M3(T )≤ ‖∇v‖Hq+1([0,T ];LLL2(Ω))+‖∇· ppp‖Hq+1([0,T ];L2(Ω)).

6 Numerical results

In this section we probe the error estimates for the dissipative scheme and for the non-

dissipative scheme established in Theorem 3 and Theorem 6 by numerical examples. We

consider the lowest order case q = 1 in time when the method (9) corresponds to the im-

plicit midpoint rule. On an equidistant grid tn = n∆ t , 0 ≤ n ≤ N, on the time interval [0,T ]
with step size ∆ t that is determined depending on the mesh parameter h of the spatial

mesh the numerical approximations vn
h,∆ t := vh,∆ t(·, tn) ∈Wh, pppn

h,∆ t := ppph,∆ t(·, tn) ∈VVV h and

v̂n
h,∆ t := v̂h,∆ t(·, tn) ∈ Mh satisfy the system of equations

(δ∆ tv
n
h,∆ t ,ξ )Th

=−(pppn
h,∆ t ,∇ξ )Th

+ 〈 p̂pp
n

h,∆ t ·nnn,ξ 〉∂Th
+( f n+1/2,ξ )Th

, (33a)

(δ∆ t pppn
h,∆ t ,ψψψ)Th

=−(vn
h,∆ t ,∇·ψψψ)Th

+ 〈v̂n

h,∆ t ,ψψψ ·nnn〉∂Th
, (33b)

〈 p̂pp
n

h,∆ t ·nnn,µ〉∂Th\∂Ω = 0, (33c)

〈v̂n

h,∆ t ,η〉∂Ω = 〈ġn+1/2,η〉∂Ω , (33d)

for all ξ ∈Wh, ψψψ ∈VVV h and µ ,η ∈ Mh, where

f n+1/2 := f (·, tn+∆ t/2) and ġn+1/2 := ġ(·, tn +∆ t/2),

as well as

δ∆ t v
n
h,∆ t :=

vn
h,∆ t − vn−1

h,∆ t

∆ t
and vn

h,∆ t :=
vn

h,∆ t + vn−1
h,∆ t

2
,

and similarly for ppph,∆ t . Accordingly the numerical flux (10) corresponding to the dissipative

scheme reduces to

p̂pp
n

h,∆ t = pppn
h,∆ t − τ(vn

h,∆ t − v̂
n

h,∆ t)nnn on ∂Th, (34)

whereas the numerical flux (11) becomes

p̂pp
n

h,∆ t = pppn
h,∆ t − τ(δ∆ tv

n
h,∆ t −δ∆ t v̂

n
h,∆ t)nnn on ∂Th. (35)

We have implemented (33) together with (34) and (35), respectively, for piecewise con-

stant, piecewise linear and piecewise quadratic Lagrange elements in R
2. The local mass

and stiffness matrices as well as the right hand side are evaluated using order 6 quadrature

rules on the triangles as well as on the edges.

Example 1 We consider a square domain Ω = (−1,1)× (−1,1) ⊂ R
2, homogeneous bound-

ary conditions g = 0 on ∂ Ω × (0,T ), a homogeneous source term f = 0 in Ω × (0,T) and

initial conditions v0 = sin(πx1) sin(πx2) as well as ppp0 = [0,0]T in Ω , where xxx = [x1,x2]
T
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Fig. 1 Errors ‖(v− vh,∆t )(·,1)‖Ω , ‖(ppp− ppph,∆t )(·,1)‖Ω and ‖(v− v̂h,∆t )(·,1)‖h with k = 0 and k = 1 (top

down) for the dissipative flux (34) (left) and non-dissipative flux (35) (right).

and as usual xxxT denotes the transpose of xxx. The corresponding exact solution of (2) is given

by

v(xxx, t) = cos(
√

2πt) sin(πx1) sin(πx2),

ppp(xxx, t) =
1√
2

sin(
√

2πt) [cos(πx1) sin(πx2),sin(πx1)cos(πx2)]
T .

This example has also been used as a test problem in [16]. In contrast to the present work

Nguyen et al. discuss the dissipative scheme only and use higher-order backward difference

formulas as well as diagonally implicit Runge-Kutta methods for time discretization.

Figure 1 shows the absolute error at time T = 1 in the scalar variable ‖(v− vh,∆ t)(·,1)‖Ω ,

in the flux variable ‖(ppp− ppph,∆ t)(·,1)‖Ω and in the numerical trace ‖(v− v̂h,∆ t)(·,1)‖h as

a function of the mesh parameter h for polynomial degree k = 0 and k = 1 (top down).

The plots in the left column correspond to the dissipative scheme, i.e., to the numerical

trace (34), while the right column has been obtained with the non-dissipative scheme, i.e.,

using the numerical trace (35). Here ‖ · ‖h denotes a mesh dependent norm on L2(∂Th)
given by ‖µ‖2

h := ∑K∈Th
hK‖µ‖2

∂K
for any µ ∈ L2(∂Th). For the space discretization we use

structured meshes Th with M = 8, 32, 128, 512 and 2048 triangles, as shown in Figure 2

(left) for M = 32, and accordingly we choose the time step size ∆ t = h. In all our examples

the coupling parameter is set to be τ = 1.

Since the time discretization used in this example is second order accurate only, we use

smaller time steps ∆ t = h3/2 instead of ∆ t = h in the corresponding plots for polynomial

degree k = 2 in space shown in Figure 3.
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Fig. 2 Structured mesh of Example 1 (left) and the locally refined unstructured mesh of Example 2 (right).
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Fig. 3 Errors ‖(v− vh,∆t )(·,1)‖Ω , ‖(ppp− ppph,∆t )(·,1)‖Ω and ‖(v− v̂h,∆t )(·,1)‖h with k = 2 for the dissipative

flux (34) (left) and the non-dissipative flux (35) (right).

After a pre-asymptotic region of slower convergence, which is more pronounced for

lower order elements in space as well as for the non-dissipative flux, we observe optimal

convergence for both numerical fluxes. This behavior is actually better than our theoretical

results predict: While Theorem 3 guarantees optimal convergence for the dissipative scheme,

we did not prove optimal order convergence for the non-dissipative scheme, missing by

a factor h1/2. However, as can be seen in Figure 3 the convergence behavior of the two

schemes is almost identical for k = 2. ⋄

Example 2 In the second example we consider unstructured locally refined grids with M =
197, 254, 417, 629 and 1034 triangles on a non-convex domain as shown in Figure 2 (right)

for M = 254. This example is intended to show that the CDG-HDG method can be used on

locally refined grids with a time step size that is chosen consistent with the largest element

of the grid. The boundary conditions and the source term in (9) are chosen such that the

exact solution of (2) is given by the time-harmonic wave

v(xxx, t) = cos(ωt)Jξ

(
κ
√

x2
1 + x2

2

)
cos(ξ arctan(x2/x1))

with ω = κ = 4 and ξ = 2/3, where Jξ denotes the Bessel function of the first kind of order

ξ . A similar example has been used as a test problem for a corresponding HDG method for



22 R. Griesmaier, P. Monk

0.24  0.26  0.28  0.30  
10

−2

10
−1

10
0

h

er
ro

r

 

 

L2−error of v

L2−error of p
hnorm−error of vhat
O(h2)

0.24  0.26  0.28  0.30  
10

−2

10
−1

10
0

h

er
ro

r

 

 

L2−error of v

L2−error of p
hnorm−error of vhat
O(h2)

0.24  0.26  0.28  0.30  
10

−2

10
−1

10
0

h

er
ro

r

 

 

L2−error of v

L2−error of p
hnorm−error of vhat
O(h3)

0.24  0.26  0.28  0.30  
10

−2

10
−1

10
0

h

er
ro

r

 

 

L2−error of v

L2−error of p
hnorm−error of vhat
O(h3)

Fig. 4 Errors ‖(v− vh,∆t )(·,1)‖Ω , ‖(ppp− ppph,∆t )(·,1)‖Ω and ‖(v− v̂h,∆t )(·,1)‖h with k = 1 and k = 2 (top

down) for the dissipative flux (34) (left) and the non-dissipative flux (35) (right).

the Helmholtz equation in [7]. If cos(ωt) 6= 0, the exact solution v(·, t) has a singularity at

(0,0) such that v(·, t) ∈ H1(Ω ) but v(·, t) /∈ H2(Ω ).
Figure 4 shows the absolute errors at final time ‖(v−vh,∆ t)(·,1)‖Ω , ‖(ppp− ppph,∆ t)(·,1)‖Ω

and ‖(v− v̂h,∆ t)(·,1)‖h as a function of the mesh parameter h for polynomial degree k = 1

and k = 2 (top down). As before, the left column corresponds to the dissipative scheme while

the right column has been obtained with the non-dissipative scheme. The time step size in

this example is chosen to be ∆ t = h, i.e., according to the diameter of the largest triangle in

the spatial mesh. Due to the strongly local refinement of the grids near the origin the mesh

parameter h varies much less in this example than in the previous one.

The results in Figure 4 show that the method converges at the optimal rate and so indi-

cates that the method is able to handle locally refined grids as intended. ⋄

Further numerical results for the dissipative scheme (6)–(7) using a different time step-

ping can be found in [16]. For more details on the numerical implementation of HDG-

schemes, in particular on hybridization strategies and post-processing of the numerical so-

lution we refer to [3, 15, 16].

7 Concluding Remarks

We have provided an error analysis of two fully discrete methods for approximating the

acoustic wave equation using an arbitrary order implicit scheme in time. The resulting
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CTG-HDG schemes are unconditionally stable. Although our theoretical analysis provides a

sub-optimal convergence rate for our new non-dissipative scheme, numerical results do not

indicate any loss of order, so an interesting problem is to remedy or explain this discrepancy.

The main disadvantages of the CTG-HDG scheme is that as the order of convergence

in time increases, larger and larger discrete problems need to be solved. Other Runge-Kutta

schemes such as the DIRK scheme used in [15] can avoid this, although it is still necessary

to perform an implicit solve for each stage. Extensions of the analysis to include this case

would also be useful.

A Projection estimate on the element boundaries

In this section we give a proof of the projection estimate on the element boundaries (4c). Our arguments rest

on those used in [4] to prove the corresponding interior estimates (4a) and (4b).

We start with a slight modification of Lemma A.2 of [4].

Lemma 6 Let K ∈ Th, τ as introduced in Section 2.1, and suppose

p ∈P
⊥
k (K) := {φ ∈Pk(K) | (φ ,w)K = 0 for all w ∈Pk−1(K)}

satisfies

〈τ p,φ〉∂ K = b(φ) for all φ ∈ P⊥
k (K),

where b : P⊥
k (K)→ R is linear. Then

‖τ p‖∂ K ≤Ch
1/2
K ‖b‖,

where ‖b‖ denotes the operator norm of b with respect to the L2-norm on P⊥
k (K).

Proof Denoting by F the edge/face of K at which τ = τmax
K ,

‖τ p‖2
∂ K = 〈τ p,τ p〉∂ K ≤ τmax

K 〈τ p, p〉∂ K = τmax
K b(p)≤ τmax

K ‖b‖‖p‖K .

Using the estimate

‖p‖K ≤Ch
1/2
K ‖p‖F for all p ∈P

⊥
K (K),

which has been shown in Lemma A.1 of [4], gives

‖τ p‖2
∂ K ≤ τmax

K ‖b‖Ch
1/2
K ‖p‖F = ‖b‖Ch

1/2
K ‖τmax

K p‖F ≤Ch
1/2
K ‖b‖‖τ p‖∂ K .

⊓⊔

The following proposition should be compared to Proposition A.2 of [4].

Proposition 1 Suppose k ≥ 0, and let K ∈ Th and τ as introduced in Section 2.1. Then,

‖τ(ΠW w−w)‖∂ K ≤Ch
1/2
K

(
h
ℓzzz
K |∇·zzz|Hℓzzz (K)+ τmax

K h
ℓw
K |w|Hℓw+1(K)

)

for ℓw,ℓzzz ∈ [0,k].

Proof Denoting δ w := ΠW w−wk , where wk is the L2-projection of w onto Pk(K), we have

‖τ(ΠW w−w)‖∂ K ≤ ‖τ(w−wk)‖∂ K +‖τδ w‖∂ K .

Applying a trace inequality and the approximation properties of the L2-projection the first term can be esti-

mated by

‖τ(w−wk)‖∂ K ≤ τmax
K ‖w−wk‖∂ K ≤ τmax

K h
−1/2
K

(
‖w−wk‖K +hK |w−wk |H1(K)

)

≤Cτmax
K h

ℓw+1/2
K |w|Hℓw+1(K).
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To estimate the second term we recall that on each element K ∈ Th the component ΠW w satisfies

(ΠW w,φ)K = (w,φ)K for all φ ∈ Pk−1(K),

〈τΠW w,φ〉∂ K = (∇·zzz,φ)K + 〈τw,φ〉∂ K for all φ ∈ P⊥
k (K)

(see Proposition A.1 of [4]). This implies that δ w ∈P⊥
k and

〈τδ w,φ〉∂ K = bw(φ)+bzzz(φ) for all φ ∈P
⊥
k (K),

where bw(φ) := 〈τ(w−wk),φ〉∂ K and bzzz(φ) := (∇·zzz,φ)K . It has been shown in the proof of Proposition A.2

in [4] that

‖bw‖ ≤Cτmax
K h

ℓw
K |w|Hℓw+1(K) and ‖bzzz‖ ≤Ch

ℓzzz

K |∇·zzz|Hℓzzz (K).

Since by Lemma 6,

‖τδ w‖∂ K ≤Ch
1/2
K (‖bw‖+‖bzzz‖),

this ends the proof. ⊓⊔
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