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Discretization of the wave equation using continuous elements
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Abstract We provide an error analysis of two methods for time stepping the wave equation.
These are based on the Hybridizable Discontinuous Galerkin (HDG) method to discretize
in space, and the continuous Galerkin method to discretize in time. Two variants of HDG
are proposed: a dissipative method based on the standard numerical flux used for elliptic
problems, and a non-dissipative method based on a new choice of the flux involving time
derivatives. The analysis of the fully discrete problem is based on simplified arguments using
projections rather than explicit interpolants used in previous work. Some numerical results
are shown that illuminate the theory.
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1 Introduction

The wave equation is often discretized using explicit time stepping methods. In this case
the use of a discontinuous Galerkin method in space is attractive because these methods
give a block diagonal mass matrix. However, if the grid is unstructured and more refined in
some subregions of the domain compared to the average mesh size (for example to model
small geometric features), an explicit method would require small time steps governed by
the smallest elements to maintain stability (using a method that uses different time steps
in different parts of the mesh is also a possible remedy in this case, see, e.g., Grote and
Mitkova [8]).

As pointed out by Nguyen, Peraire and Cockburn in [16], discontinuous Galerkin meth-
ods are not generally well suited to implicit time stepping since the number of spatial degrees
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of freedom is generally larger for a discontinuous Galerkin method compared to a conform-
ing method. However hybridizable discontinuous Galerkin (HDG) methods are well suited
to implicit time stepping, since at each time step the element degrees of freedom can be
eliminated from the problem by cheap local calculations so that only degrees of freedom
associated with the numerical trace of the scalar variable on the skeleton of the mesh need
to be involved with a global calculation at each time step. (A comparative study of the effi-
ciency of conforming methods versus HDG schemes for elliptic problems has recently been
carried out by Kirby, Sherwin and Cockburn in [14].)

In [16] interesting numerical results are presented for a scheme that combines the HDG
method belonging to the general framework discussed by Cockburn, Gopalakrishnan and
Lazarov [3] (for a refined analysis see Cockburn, Gopalakrishnan and Sayas [4] and for er-
ror estimates for the Helmholtz equation see [7]) together with backward differentiation for-
mula or diagonally implicit Runge-Kutta (DIRK) methods in time. In particular it is shown
that, provided the time stepping method is sufficiently high order, post-processing can be
applied to extract inexpensive improved approximations to the fields. In addition energy
conservation results are proved, but no error estimates are provided.

In this paper we shall prove convergence of a method that combines one of two variants
of HDG methods in space with the continuous Galerkin method in time [5, 12, 13]. This time
stepping method is closely related to the Gauss-Legendre Runge-Kutta method [9, 10]; in
fact in our application the only difference resides in how the time integral of the source term
is handled. We provide an analysis of the continuous time Galerkin method based on the
work of [5, 13]. In particular we prove that the resulting methods are unconditionally stable,
and analyze convergence.

We choose to analyze the continuous time Galerkin method in preference to a classical
analysis of the Runge-Kutta scheme for several reasons. First it is noted in [1] that related
Runge-Kutta and discontinuous Galerkin schemes can be viewed as approximations of the
continuous time Galerkin method using suitable quadrature, so understanding the funda-
mental scheme is important. In addition, a variational analysis proves convergence under
weaker conditions on the regularity of the solution than a classical analysis of the collo-
cation scheme because the data is not interpolated or approximated by quadrature. Finally,
Karakashian and Makridakis [12] note that the variational analysis is simpler than the anal-
ysis of corresponding implicit Runge-Kutta methods.

We rewrite the wave equation as a first order system involving velocity and pressure
and use the HDG scheme to discretize in space. After discretization the resulting system of
ordinary differential equations is similar to that arising from a mixed finite element method;
(see Geveci [6] for a classical approach to mixed systems). We know of no convergence
proof of the continuous time Galerkin method for the mixed system, but the approach we
use could be applied in that case as well.

Of course the main drawback of such methods is that a linear system must be solved
at each time step, and the size of the linear system increases with the number of stages
(or order) of the time stepping scheme (this increase in size does not occur for the DIRK
schemes in [16] and might be controlled by modifying the techniques from [17] previously
used for parabolic problems, but this is not considered here).

Our analysis of the continuous time Galerkin method uses a decomposition of the dis-
crete solution in time motivated by a similar decomposition used by French and Peterson in
[5]. However, because that paper focused on a first order system in time but a second order
system in space, we have to change the decomposition to enforce an orthogonality condi-
tion. This orthogonality condition is motivated by the analysis of continuous time Galerkin
methods in [12, 13], where the discrete solution is written explicitly using basis functions
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related to the Gauss-Legendre points in time. We avoid this explicit construction and work
only with projections, and this simplifies the analysis considerably.

As mentioned earlier, we consider two variants of the HDG method. One is a straight-
forward generalization to the time domain of the method in [3], which is also the method
used in [16]. As we shall see this method is dissipative, but also optimally convergent in
space and time. By modifying the HDG fluxes to using time derivative terms, we can obtain
a conservative scheme, but in that case do not prove optimal order convergence (missing by
a factor of h'/% where h is the space grid size). Our limited numerical results do not exhibit
this loss. In either case we use the projection proposed in [4] to provide an approximation
operator in space.

In summary then, the novel content of this paper is to provide an analysis of the dissipa-
tive and new non-dissipative HDG methods in space using the continuous Galerkin method
in time. We also provide a simplified analysis of the continuous time Galerkin method based
on the work of [5, 12, 13]. Our analysis has relevance to other mixed systems.

The layout of the paper is as follows. In Section 2 we detail the problem we shall solve,
and its discretization in space by the two HDG methods considered here. We derive energy
relations for this semi-discrete problem and so show that one method is dissipative, while
the new method is not. Then we detail the continuous time Galerkin - HDG (CTG-HDG)
method. In Section 3 we introduce the decomposition of time dependent functions that un-
derlies our analysis and provide an analysis of the decomposition, as well as several other
approximation operators used in the analysis. Then in Section 4 we prove convergence of
the dissipative CTG-HDG scheme by first deriving a stability result, and then verifying con-
sistency before providing a final convergence result. The same general procedure is carried
out for the non-dissipative scheme in Section 5. In Section 6 we provide a few numerical
results to probe our theory. Finally in Section 7 we present some conclusions from our study.

2 The CTG-HDG method
2.1 Preliminaries
Given a final time 7 and a bounded Lipschitz polyhedral domain 2 C RY, d = 2,3, with
boundary dQ and functions f = f(x,7) and g = g(x,7), we consider the wave equation

i=Au+f inQ x(0,T) (la)
subject to the boundary data

u=g ondQ x (0,7). (1b)

Here u(x,t) describes the displacement in some direction of the point x € Q at time ¢ > 0
and we assume functions ug and u; are given such that

u(,0)=up and u(-,0)=u; in Q. (1¢)

Throughout we denote by w and w the first and second derivative of w(x,) with respect to
the variable ¢, respectively.

In this paper we wish to approximate the velocity v = u as well as the pressure p = Vu.
To apply the HDG method in space we rewrite (1) as a first order system

v=V.-p+f inQ x(0,7), (2a)
p=Vvy in Q% (0,T), (2b)
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using boundary data
v=4¢g on dQ x (0,7) (2¢)

and initial data
v(,0)=vo:=u; and p(-,0) = p,y:=Vuy in Q. (2d)

As usual we consider a spatial mesh covering €2 consisting of regular, i.e., non-degen-
erate [2], tetrahedra K with faces F in R3 (or triangles K and edges F in R2) and denote the
resulting collection of triangles/tetrahedra by 7j,. Accordingly hg denotes the diameter of
K € 7T;, and h := maxg hg. The collection of edges/faces is denoted by &, and the collection
of element boundaries by 97, := {dK | K € T, }.

On each element K and each edge/face F' we consider the local spaces of polynomials
of degree less than or equal to £ > 0,

W(K) :=Pu(K), V(K):=Pi(K):=(Pc(K))? and M(F):="Pi(F),

where Py (S) denotes the space of polynomials of total degree at most k in m variables on S
where S C R™. The corresponding global spatial finite element spaces are given by

Wy, == {w e L*(Q) | wlk € W(K) forall K € Ty, },
Vii={zeL*(Q)|zlx e V(K) forall K € T},
My = {p € L*(&,) | u|r € M(F) forall F € &},

where L?(Q) := (L*(Q))? and L*(&),) := [Ireg, L*(F) are defined in the usual way. On
these spaces we consider bilinear forms

(w2)7, = Y, woki= ), /KW~zdx,

KeTy KeT,
(w,2)7,:= Y, wa)g:= Y, / w-zdx,
KeTy, KeT, K
(M wor, = ), (M Mok =), / nuds,
KeT, KeT,” K
and write || - [|[o, [|- [, [| - |57; and || - ||5x for the corresponding L?-norms.

We shall make use of the CGS projection originally introduced in [4], which is defined
element by element as follows:

Il : L*() x L*(Q) D dom(IT,) — Wy x V), Iy(w,2) := (Iyw, Myz),

where for any K € 7, and all edges/faces F of K the functions I'Tyw and ITy z satisfy

(wa,(P)K = (W,(P)[( for all (P S ’Pkfl(K), (3a)
(HVZ, W)K = (Z, W)K for all yc ’Pkfl(K)? (3b)
(Myz-n—tIlyw,U)p = (z-n—Tw,U)F for all p € Pi(F), (3e)

where 7 : 7, — [0,0) denotes a non-negative function that is assumed to be constant on
each edge/face of K € Tj, such that Tg®* := max 7|y, > 0 for all K € Ty, and n is the outward
unit normal to K. The domain of definition dom I}, of this projection is such that the right
hand sides of (3) are well defined. Note that in (3c) we use a different sign than in the original
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definition of the projection from [4]; this choice fits the structure of the numerical flux
introduced in Section 2.2 below. The following approximation properties of the projection
established in [4] remain true without changes: There exists a constant C independent of K
and 7 such that

41

[HIyw —wlgx < Ch%’“ Wlgews1 (k) +Cﬁ| Vez|yz k), (4a)
K
1 , *
IMyz—zllx < Chg ™ [z]gecs1 g+ Ch ™ T Wl () (4b)

for £, ¢, € [0,k], where Ty := max T|yx\ p+ with F* being an edge/face of K at which 7|5k
is maximum. Furthermore, as shown in Appendix A,

1/2(,¢ w
le(Thww —w)llox < Ch> (h2] V-2l gre ey + TR 38 W ) (4)

for £,,, 0, € [0,k]. Here H*(S), s > 0, and H*(S) := (H*(S))? are the standard Sobolev spaces
on open domains S C R?, and we denote the corresponding semi-norms and norms by
| asesys | [msgsy and ||+ lascsys || - [[ms(s)» respectively. Throughout C is a generic positive
constant, not necessarily the same at different occurrences.

We shall need in addition the L?-projection on the faces of the mesh Py, : L*(97T;,) — M,
defined by

(Pupt—p,m)a7;, =0  foralln € M. (%)

Of course, since M, is a discontinuous space, this projection can be defined face by face.

2.2 Semi-discrete problem

The semi-discrete formulation of the method analyzed in this work consists in finding ap-
proximations vy (t) € W, of v(z), p,(t) € V), of p(¢) and a numerical trace v, (¢) € M}, ap-
proximating v(¢) on &, for t € (0,T), which satisfy

On 07, = =P V)75, + (P -1, 0) o1, + (. 9) 75,5 (6a)
PV 7, =i, VW) 7, + O, W m) 57, (6b)
(Pr-m1)51000 =0, (6¢)
VMoo = (&:Maa (6d)

forall ¢ € Wy, y € V), and u, ) € Mj,. Denoting by 7 : d7;, — [0,00) a stabilization function
that is constant on each edge/face, satisfying tg¢'®* > 0 for all K € 7}, as before, we consider
two possible methods corresponding to different numerical fluxes py,:

— A dissipative method closely related to the elliptic theory (see also [16]) where the flux
is given by
Pr=py—T(vi—V)n  ondTj. @)
— A new non-dissipative method that does not reduce to the elliptic problem at steady state
where the flux is given by

ﬁh :ph—r(vh—ﬂ,)n on (977, (8)
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We first show the energy conservation properties of the two methods. Selecting ¢ = vy,
in (6a) and ¥ = p,, in (6b) we add the results and integrate by parts to obtain

1d ~ ~
2dr (HVhH.Q + HPhHQ) = (Px '"7Vh>877, +(fyv) 7, + (V= Vi, Py 'n>a7;~

Combining (6¢) with it = vy, and (6d) with ) = p,, - n together with this equality we get

1d ~ ~
Sar (||Vh||§2 + ||Ph||§2) = —((pn—Pn) - 1,vi =)o, + (fsvn)T,

Proceeding first to the numerical flux (7) we find that

1d ~ ~
% (Ivallg + lPall2) = —(T@h = Vi), 9% — i) o7, +(fvi) T,
i.e., if f =0 this implies that

1d
Sdr (||Vh||9 + thHQ)

and the method is generally dissipative.
On the other hand, using the numerical flux in (8) we obtain that

1d N
3 (HVhHQ +1pulle + (@ —vi). 9% —vi)aT,) = (f.vi) 75,

and the method is now non-dissipative provided the interface term is included in the energy.

2.3 Fully discrete problem

To discretize in time we consider a sequence of time steps
O=n<h<bh<---<ty=T

where as before 7 > 0 is the final time for the integration. For 0 <n <N —1 we define
Aty = tyr1 —ty, Iy := (ty,ty11), At := max, At,, and for any g > 1 we consider the discrete
spaces

s;"j\, ={@cH'((0,T)) | @l;, € Py(I,), 0<n<N—1},

Sy = {0 e L2(0.1) | @l € Pyoi (1), 0<n < N1},

0)

Note that S q_]) A; 1s a discontinuous space, whereas s 2.t is continuous (and one degree
higher). The fully discrete space-time finite element spaces for the method are then

0 —1 —1

Wi = S\%, @ W, Wi =815 @ W,
0) ._ <0 (=1 . o(=1)

Vi = Sq,m @V, Viar =S 14 ®Va,
0) . (0) (=1 . -1)

MI<1,A)t =8, 0 O My, Mh,At) = Séfl,m QM.

Now we state the discrete problem. For later reference we formulate it in terms of more
general right hand sides, which for the problem considered in this section are set to be
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D:=f,T:=0,A:=0and O :=g. We seek (vhyA,,phﬁA,,ﬂ,’At) € W;E?A)t X V,(l(zt X M;I?A)t

such that

T
/0 [n.a1:0) 7, + (Prar:VO) 75, — (Prar -1, 9) o7, | di (9a)

= [ (@007~ (A.0)a7,] .

T
/0 [(Braes W) T+ Vnan, V- W) 7, = Vhan, W-n)or; | di =/0 (I, y)7,dt, (9b)
T T
/0 @h,m'n,wan\agdl:/o (A ) amnaadr, (%)
T n T
/0 (Vh,At7n>3th:/0 (©,m)s0dt, (9d)

)

;and u,mem ;;A]t) , together with either the dissipative numerical

forall ¢ € Wh:;), ye Vﬁz._A]
flux ' ’

ﬁh,m =PnaAr — T(Viar — Viae)R on d7, (10

corresponding to (7), or the non-dissipative numerical flux

Prar = Puar —T(Vnar — Viac)n on d7, (1)

corresponding to (8). At the initial time we assume that
Viai(+,0) =Ihyvy and  py 4,(-,0) = Iy py,

and the initial condition for the interface variable is Vj, o, (-,0) = Pyvo|57; - Other more con-
venient choices of initial data could be allowed at the cost of some extra details and terms
in the error estimate.

Note that by choosing the test functions to vanish except on a particular time interval
(which is possible because they are discontinuous) we can solve step-by-step in time (al-
though for ¢ > 1 we have to solve a system of discrete problems). In any case, the fact
that we have an HDG system in space implies that we can reduce the problem at each step
to solving for the interface variables, i.e., for the scalar numerical trace vj, »,. This is an
attraction of HDG for higher order CG methods in time.

3 Preliminary estimates for stability and consistency

The convergence analysis for the two numerical fluxes will be handled in separate sections.
But some parts of the stability analysis are common to both arguments. This is the subject
of the present section.

We start by defining an L>-projection Ps : L>(0,T) — S;:}? 4, for time dependent func-

tions such that on each subinterval I, in time and for all ¢ € L(0,T)

tn
/+1(P5(p—(p)19dt:0 forall & € Py 1(L,). (12)
n
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This projection suffices to prove stability in the lowest order case when ¢ = 1, but we need
another decomposition in order to provide stability between time steps for higher order
elements in time. Suppose ¥ € P,(I,), then we write

(t *tn)

= 1
Y=nn-+ A7 ", (13)
where ¥ € P,(I,) and y; € P,—1(l,) are such that
Int1
/ WOdt =0 forall & € Py_y(l,). (14)
n

We have the following lemma guaranteeing the existence and stability of this decomposition.

Lemma 1 The decomposition (13) is well defined and in addition there is a constant C
independent of n, At and 'y such that for each 0 <n <N —1,

I7ill2 ) < €Yz (15)

for all y € Py(I,). The component 'y satisfies

')/O(tn) = Y(tn) and 'Yg([n+1) = ')’2(tn)»

and there is a constant C independent of n, At and 'y such that
1002,y < AL y(1)]- (16)

Remark 1 A similar decomposition to (13) was used in [5] but in their case ) was taken
to be constant in time. This suffices for the first order derivative in time and second order
derivative in space formulation used there, but results in terms we cannot analyze for the
first order system considered here. Our choice avoids these terms and is motivated by the
analysis of [11-13] where a similar decomposition is constructed explicitly using Lagrange
basis functions at Gauss-Legendre points. Our goal is to simplify this analysis by avoiding
this explicit construction.

Proof The decomposition (13) is well defined because, using the orthogonality requirement
(14), 1 € Py—1(I,) satisfies

Tn+1 (t — tn) Tn+1

/ —ylﬂdt:/ Yo dr forall & € Py (I,).

I At I

The left hand side of this equation defines a symmetric, bounded and coercive bilinear form
on P, (I,) x P41 (I,) considered as subspaces of L(I,) x L?(I,). So by the Lax-Milgram

lemma 7; exists uniquely for each y. Furthermore,

[t —1t,
H N
Mapping to the reference interval [0, 1], using the equivalence of norms on finite dimensional

vector spaces, and then mapping back to the given time interval establishes (15).
The fact that y(z,) = ¥(t,) is obvious, and selecting % = Y in (14) shows that

< C7l2q,)-
L2(I)

0= /:H YoYodt = % (% (tns1) — 15 () -
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By mapping to the reference interval,

1
||70Hi2<,n) :Al/o Yg(thrAts)ds.

Furthermore, denoting by 7, the Legendre polynomial of degree ¢ on [0, 1], then in view
of the fact that Gauss-Legendre quadrature using ¢ points is accurate for polynomials of
degree 2g — 1, we see that the orthogonality requirement (14) is equivalent to the fact that ¥
vanishes at the shifted Legendre points. So

V(ta)
A =
yo(tﬂ + ZS) ﬂq(O) ﬂq(s),
and thus,
2 =80T [ ar( T
02, = A[(nq(o)) 0 7 (s)["ds = At(nq(o)) 2g+1
Since ¢ is fixed, this gives (16). O

Given wy A, € WiEOA)t we use the decomposition (13) to write

() ((=t) )

Whoatl, =Wy + Ar i foreachO0<n<N-—1,

where w(g") € Py(I,) ®W,, and w(1"> € Py_1(I,) Wy, and we note that corresponding de-

compositions of zj o; € VEIOZI and Wy 4, € M,(IOA)I are given analogously. In the following
lemma we establish stability estimates for these decompositions. We write S, 1= Tj, X I,
9S8y := 9Ty x I and denote by |- [Is, := |- [l2(s,.2(0))> |- Isw = I 2,522 (2)) @S Well as
I llas, == Il ll2(1,:2(57;)) the usual Bochner space norms. The result should be compared
to Lemma 2.1 of [12] and Lemma 3.4 of [13], where related estimates are given.

Lemma 2 Suppose wy ; € WiE,OA)t’ ZnAr € V;l(zt and Wy a; € Mi(,?it. Then there is a constant

C independent of W ar, ZnAr» Whoars 1, At and h such that for each 0 <n <N —1,

2 "It 1 . (n) b

I, < Car( [ Gy dr + st ) (172)
2 "It 1 . (n) 2

llzhatlls, SCAI(/t (Znar,2) )7, dt + ||Zh~,At('v[n)||Q)v (17b)

~ Tt 1 PN R ~
HTl/z(WhﬁAt _WhﬁAt)H(z)Sn < CA[(/[ <T(Wh7A, _WhﬁAt)»Wl _W1>37—h dr
n

122 (nas = ae) o) 37, ) (170)

Proof We only prove (17a) and note that (17b) and (17c¢) follow analogously. By the defini-
tion of w and w'" and integration b
0 1 gration by parts

In+1 . (I‘l) d
t (Whae,wy )7, dt
Tt 1 . (n n 1 n . (n n
= [ 65w (A1 + =) ) [ as)

il 1 , 1 )
= [0 g B, S )

n
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The Cauchy-Schwarz inequality, an inverse inequality in time and (16) give

It 1 .(n n (n n C n n
L G w7t < 1 s, s, < s, s,
_C (n)
< g )l s,

Hence, applying the arithmetic geometric mean inequality,

1

o,

et ) ) 2
/t (g s w) ), dt | < Cllwpar (5 10) [l +

and using this inequality in (18) gives

o (n) Loz Ly 2 2
t Ovnaewi?) 7, de 2 = w5, + S 1wy ot )l = Cllwaar (i) o

However direct estimation recalling the fact that 0 < (r —1,) /At < 1 on I, together with (16)
shows that

waadl3, < CUwS 3, + 1w 13,) < C(AtIwnar (i) 1 + W 13,)-

Combining these inequalities yields (17a). a

When proving consistency, we shall use a generalized interpolant P, : H'((0,T)) — S;%

related to interpolation at the Gauss-Lobatto points (see [13] where an explicit Gauss-
Lobatto interpolant is used) defined on the interval [t,,#,+1] by

(PLo)(te) = @(tn),  (PL@)(tat1) = @(tat1), (19a)
/t"+l (PLo—@)(1)O(1)dt =0  forall © € Py _o(I,). (19b)

This is a standard generalization of the interpolant and has the following properties.
Lemma 3 The operator Py is well defined for ¢ € H'(0,T) and if ¢ € HI*'(I,) then

@ —PLoll2(,) SCAquH‘PHHq*‘Un)‘ 0

In addition, for all © € Py_1(1,)

vl d Tn41

/ Cppyod= [ ovd. @1
tn dr tn

Proof The existence of Py is well-known and follows from unisolvence, and the error esti-

mate can be proved using the Bramble-Hilbert lemma [2]. The useful property (21) can be

shown as follows. If ¥ € P,_1(1,), using partial integration and the end point interpolation

and orthogonality properties of the interpolant,

1 d t i+l . Tn+1 .
[ S rewa= ool — [ (rgydar = [ poar
n tn

In
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4 Analysis of the dissipative scheme

In this section we analyze the CTG-HDG method (9) assuming that the numerical flux p, 5,
is given by (10).

4.1 Stability analysis for the dissipative scheme

We now suppose that F € L>((0,T);L*()) and G € L*((0,T);L*(£2)) and prove the fol-
lowing result which provides local stability estimates for the dissipative scheme:

Theorem 1 Let (wyar,2n.ar, Wnar) € Wiy X Vioh, x Myy, satisfy (9)-(10) with & = F,

T=G A=0ad®=0forall ¢ €W, ), we Vi) and u,n e M\, Then for each
0<n<N-—1, ' ' '

whar (o tne )G + 1z Ctae) [ < Iwnar Gt + l2nar (1) 1

g1
+2 [(F,Pswiar)T, + (G, Psznar) 7] df, (22a)

In

and assuming that At is small enough, there is a constant C independent of n, At and h as
well as F and G such that

whaells, +lznarlls, < CAT (Iwnar (1)l + 2n.ae (1) [+ IFIIS, +1GIS,) . (22b)

Proof Since the test functions are discontinuous in time we can consider a single time sub-
interval /, and first choose ¢ = Pswj o, and ¥ = Pszj o;, Where Ps is the Lz-projection
from (12). Then adding (9a) and (9b) with @ = F, I"' = G and A = 0 gives

Int1
/t [(Wnar, Pswiae) 75, + (Zn,ae, Psznac) ;] dt
n

Tnt 1

= [—(zn.ar,V Pswia) T, + (Znae -1, Pswiag) o, | dt

"nt1 .

+/t [—Wh,ar,V-Psznat) 7, + (Wnae Psznac - n)aT;, ) df
Tnq1

+/t [(F,Pswnai)7, + (G, Pszpar) ;] dt.

Using the fact that Ps is a projection, integrating by parts and applying the definition of the
numerical flux (10) we have

Int Tn+1 -
/ [(Whaes Whao) Ty, + (Znae Znad) 7, | df = / (tPs(Wn,ar —What), Pswhar) o, dt
n tn

In+1

. In+1
+ (PsWh.ar, Psznar-m) o, dt+/ [(F,Pswi.a0) 7, + (G, Pszn.ar)T,] dr.
n

n

(23)

Choosing it = Pswj, 4, in (9¢) with A =0, ) = PsZj4; - n in (9d) with © = 0, using these
identities together with the definition of the numerical flux (10) in (23) and integrating in
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time shows that

[wharCotnr) 18 + I2nae (ot 1|
41

+2 | (TPs(Wn.ar —Wnar), Ps (WAt — whoat)) o7, dt

Int1
= [Wnar (o ta) |8 + lznae (1) 18 +2/t [(F,Pswia0) 7, + (G, Pszn.ar) ;) dt.

This implies (22a).
Next we choose ¢ = w<1") and Y = zgn) in (9a) and (9b). Then adding these equations
gives

Tt 1 n . n
/t [6nar ™) 75 + (a2 7] de

Tnt1

=/ [_(Zh,Az,Vw(ln))ﬁ,+<?h,Ar'nyw(ln)bTh]dt

Iny1 ( ) (24)
+/ [~ Whar, V-2") 7 + (Far, 2y - o, | de
In

In+1
+/t [(Fo™) 7, + (G2 7] dbr.
Using the orthogonality property (14), letting &) := (r —1,) /At, and integrating by parts,

fn+1 n fnt1 n n)_(n n

[ @nan Ve yma = [ @+ 02 Vi) a
In+1 n n n n n

~ [ m i) o, — (€W V-2 i) 7] db.

Thus, applying again the orthogonality property (14) together with this identity in (24) gives

tn+l n 3 n
/t [(Wh,Az,Wg ))77, + (zh,m,z<1 ))77,] dr

I+ ~(n n n n ~(n n
= [ LEmR 2 mag — (€0 2 mow o] a

It n n
+/t [(Fw") 7 +(G,2") 7 ] d.

Proceeding as before using (9c) and (9d) together with (10) we obtain

In1 n . n In+1 n n ~(n n ~(n
L 10+ el dr+ [ GED W =)0l =557, 0

In+1 n n
- ()7 +(G,2") 7] dr. (25)

n
Now combining (17a), (17b) and (25) we have

Tn+1 (}’L)
/ (F,W] )Edf)

n

Ion arl, + lznarl, < Cae(

+

In+1 (l’l) ) )
[ G gt + I+ lnar ).

Using the Cauchy-Schwarz inequality, the arithmetic geometric mean inequality and (15)
shows (22b), provided At is small enough. a



CTG-HDG for the wave equation 13

Using this theorem we have the following corollary giving stability bounds on the solu-
tion of (9)-(10) with @ =F, I’ =G, A =0,and ® = 0:

Corollary 1 Let (whar2har-What) € Wy, X Viy, X M,ﬁj\, satisfy (9)-(10) with & = F,
I'=G, A =0, =0and zero initial data for all ¢ € W\ ,"), w e V"V and p,n e m{ V).

t

(i) Provided At is small enough, the following estimates hold for each 0 <n < N — 1 and
C independent of At, n, h as well as F and G:

n
Hwh,At('vtn-o—l)”?)JFHZh,At( a1l < (Ctagr +1) Z HFHstFHGHsm) (26a)

m=0

n
Iwhaclls, + lznaclls, < CAHCtL+1) Y (IF|I5, +IGIl5,) - (26b)

m=0

(ii) Assuming that At is small enough and that T > 0 on 97T}, the discrete problem (9)-(10)
has a unique solution.

Proof Assuming zero initial data we find from (22a) together with the algebraic arithmetic
mean inequality and (22b) that for any 6 > 0

\Iwh,m(~,tn+1)\lé + th,At(’atn-H)Hz_Q

"ol
< Z < (IF15, + G, ) + 8 (wharls, + lIznalls,)
s

< Z [(5+8Car) (IFI3, +1GI,) +8CAr (IwiarC i) + lzn.a Ctn)l2) |-

Denoting

wi,arCotm )16+ |znar Cotm ) |G = max ([[wae (o tm) |8+ 20a: o tm) |2)
0<m<n+1

and choosing 0 = 1/(2Ct,,), we find that

m*—

1
2 (10 ot + Nz ot ) < 20 (2Ct +3 ) (IFI3, +1GI3,)
m
This implies (26a), and (26b) follows from (22b).

To prove unique solvability of (9)—(10) at each time step it suffices to show that wy, 4,
Zn.A+ and Wy, 4, are zero on I, assuming that the right hand sides and the approximation of
the solution at time step #,, i.e., Wy a¢ (1), Zna¢ (-, 1) and Wy a(+,1,) vanish (since the linear
system is square). However, this follows immediately from (22), (25) and (17¢). O

4.2 Consistency and convergence of the dissipative scheme

In this section we determine the consistency error for the dissipative scheme. To this end
we study the projected errors e, := P ITyv — vy A, and ep := P Iy p — p;, 5,, where Py is
the Lobatto interpolant from (19) and (ITy,ITy) the projection introduced in (3). We also
set &, := PLPyVv — V.4, on the faces of the mesh, applying the L?-projection from (5). The
following theorem shows that these discrete functions satisfy (9)-(10).
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Theorem 2 Setting wy, o; = e, Zpar = €p, Whar = €, and
Zna=€pi=ep—T(e,—&,)n  ondT,
the equations (9)-(10) with @ =F, I' = G, A =0, and © = 0 are satisfied for all ¢ € W}f;l),
we V) andpn e ), provided that |
F=Iyv—v—(P.V-p—V-p) and G=Iyp—p—(PLVv—Vv).

Proof Starting with (9b) we can proceed time step by time step using the orthogonality

properties of ITy and ITy stated in (3a)—(3b) and the fact that (9b) (with I" = 0) and (2b) are
(=1)

satisfied by the discrete and continuous solution, respectively, to show that for all y € V h;l ,

In+1 =
[ [en W)+ (0. V- W)~ @ mor; |

= [ [(5rmve. ¥) o+ PV W) 7 — @ ny

tn
"1 =N Int1 3
—/t (Vnao W-m)oT, df—/t (P—Vvy)7,dr.

Now using the projection property of the Lobatto interpolant (21) and integration by parts
we have
Tn+1 ) .
[ W15+ 0.V W)~ @y mor |
tha . . Tnt1 e o
= (Oyp—p,w)7, — (PLVv—Vvy)7] dt */ (e —PLv+Vian W-n)yr, dr.
n

n
But recalling the definition of e, and the projection Py, we have
(ev—PLv+Vhan, ¥ -n)yr, =0
and we conclude that (9b) is satisfied with I" = G as required.

Using the same arguments we can show that for all ¢ € Wh(;;),

[WH [(6V7¢)7—h+(ep7v¢)77,_</évn»¢>6771] dr (27)

Tnt1

Tng1 o o
= [(ITyv—,9)7, — (PLV-p—V-p.0)7;] df—/t (v +Dyar—PLp)-n,0) 57 dr.

In

Recalling the definition of €,
?p~n = Panp-nf T(PLHvapLPMV) 7ﬁh,At ‘n. (28)
Therefore,

Iny1 o o
/t ((ep +Ppac—PLp) n,9)o7, dt

Tnt1

= ((PLlyp— Prp) -n—t(PITyv—FLv),9) 57, dt =0,

In
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where we applied (3c). Using this in (27) shows that (9a) is satisfied provided @ = F is
chosen as in the theorem.
Next, (28), (3¢) and (9¢) (with A = 0) imply that for all i € M, "),

Tnt1 ~ In+1
/t (ep'n,man\agdf:/t (PL(p-n—1(v—v)),)a7000dt =0,

which shows that &, satisfies (9¢) (with A = 0). Finally, for all n € M\ )/, we obtain from
(1b) and (9d) (with © = g) that

Il Iny1 -
/ (ev,M)oqdt =/ (PL(Pyv—v)+PLv—"p41,M) 00 dt =0.
tn ty

This shows that e, satisfies (9d) (with ® = 0) and completes the proof. O

It will also be useful to have estimates of the consistency error, which follow immedi-
ately from (4a), (4b) and (20).

Lemma 4 Assuming sufficient regularity on the solution (as indicated by the norms on the
right hand side of the following inequalities), the consistency error terms in Theorem 2 are
bounded as follows: For each0 <n <N —1,

IFlls, = [[(ITwv =) = (PLV-p=V-p)s,
hﬁp-‘rl

< C[h["'ﬂ V21,0041 (2)) + | V'PHLZ(I,,;H%H(Q))JFAfZH | V'pHH‘”‘(In;LQ(Q))} ’

1Glls, = [(ITyp— p) — (PLLVv=VV)]s,
< C[}/HI ||P||L2(1,,;H’p+‘<9)) +ht max 1’-v}k{HV||L2(1n;H"’+‘(Q)) +arf VVHH‘I‘*'I(’n;l?(Q))} ’
for £y,€, € [0,K].

Using Corollary 1 and Theorem 2 together with Lemma 4 we have the following con-
vergence result:

Theorem 3 Suppose At is sufficiently small, and that the solution (v,p) of the mixed hy-
perbolic problem (2) is sufficiently smooth in space and time that the estimates of Lemma 4
can be applied. In addition suppose vy s, Py, x; and vy a; satisfy the CTG-HDG problem (9)
using the dissipative numerical flux (10) with T = O(1) and the initial conditions

Vh,At('70) :vao and ph,At(’vo) :HVPO in
and Vi, o;(+,0) = Puvola, on dTy. Then the following error estimate holds:

Oglnng(Hv('vtﬂ) - VhﬁAt('vtﬂ)HQ_'_Hp('v[ﬂ) _ph,At('7tn) H-Q)

< CT'2 (W' My (T) + W' Mo (T) + AtTH MA(T))
v =vhatllz2 o122 F 1P = Praclliz o120
< CT (R F'My(T) + W' Mo (T) + At M5(T)),
for 4,0, € [0,k], where
M(T) < Il 2o, rysm0+1 (2))
My(T) < ||I"‘|L2<[07T];pr+‘(g)) + ||V'P||L2([o,T];pr+'(Q))7
M5(T) < [[VVllgae o7z IV Plaeiorie )
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5 Analysis of the non-dissipative scheme

This section contains the error analysis of the CTG-HDG scheme (9) together with the non-
dissipative numerical flux from (11). Since the reasoning is similar to that in Section 4, we
do not include all details and refer to that section instead whenever appropriate.

5.1 Stability of the non-dissipative scheme

Let F € L*((0,T);L*(R)), G € L*((0,T);L*(2)) and H € L?>((0,T);L*(d7T3)). Similar to
Theorem 1 we obtain the following local stability estimates for the non-dissipative scheme.
)

Theorem 4 Suppose (Wj ar,ZnAts What) € W;EOA; X V;logt X M}(Ioit satisfy (9) and (11) with

®=F,T=G A=H and®=0forall ¢ €W\, we V) andunem ). Then,
foreach0<n<N-—1, '

whae (ot )IIS + l2nae (o tar ) IS + 1572 F.ar = whoae) Cotas) 37

= wn.ar o)l + lzna o) G + 122 (Pn.ar = waar) Gt 57,
Int1

It .
+2 t [(F,Pswnai)7, + (G, Psznar)7;) di +2 | (H,Ps(Wnar —Wnar)) o, dt,
(29a)

and assuming that At is small enough, there is a constant C independent of n, At and h as
well as F, G and H such that

wh.aell3, + llznacl3, + 117" (Wn.ar — wh.ae) 35,
<CAt(|F|5, +IGI3, + =" 2H| 3,

+lwnar Cotn) @+ lznar () [ + 1122 (Fnar = wia) (i) [37;) . (299)

Proof As in the proof of Theorem 1 we consider a single time interval /, and first choose
test functions ¢ = Pswy, ar, ¥ = Pszjar» 4 = Pswy a; and ) = PsZzj, o, - n. Adding (9a) and
(9b) (with @ = F and I" = G and A = H), integrating by parts, using (11), (9¢) (with A = H)
and (9d) (with ® = 0) we find that

In41 Iny1 R . R
/ [maes Whae) 75, + (Znars Znae) 75, ) di = */ (T(Wh,at —Whar), Whar — Whae) o7, dt
In n

T

In+1 N
+ [(F,Pswiat) T, + (G, Psznar) 7] di +/ (H,Ps(Wpat —wnat))aT, dt.
n

In

Integrating in time gives (29a).

Next we choose ¢ = w<1"), Y= z(]"), U= Wﬁ") andn :E(]") -nand write £ := (1 —1,) /At.
Adding (9a) and (9b), integrating by parts, using the orthogonality property (14), recalling
(11), (9¢) and (9d) gives

tyt1 . . . bl ) (n n

/t [(WhﬁAhW(] ))77,+(Zhﬁm,z<1 ))Th] dr+ | (T(Wh.ar —Wh,m),w<1 )—Wg )>a77, dr
n s (n) n (n) ) _ ) G0
= (Fow\") 7, + (G2 )7, + (H Wy —w") 57, ] dr.

In
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Combining (17) and (30) yields
wnacll3, + lznacl3, + 117" (Fnar — wha) |35,

In+1
/+ (GJgn))Thdt‘Jr
n

In
/ +1 (F,W(1n))7—h dt‘ T

In

gcm(

Int1 (n n
/t (H,w(l)—w(l)>a771dt)

+ [ waae )@ + | znae (1) [ + 12 (Wnar = Whar) (1) H(Z)Th)-

Using the Cauchy-Schwarz inequality, the arithmetic geometric mean inequality and (15)
shows that (29b) holds, provided At is small enough. a

As in Section 4.1, this theorem immediately yields stability bounds on the solution of
9 and (11)with@=F, ' =G,A=H,and ©® =0:

Corollary 2 Suppose (Wj A, ZnAts What) € W;SOA)I X V;loit X M,S?A)t satisfy (9) and (11) with

®=F, I' =G, A=H, ©=0 and zero initial data for all ¢ € Wh(;:), ye VE;AII) and
~1
,u, 77 € M[<1_’At)'
(i) Provided that At is small enough, the following estimates hold for each 0 <n <N —1
and C independent of At, n and h as well as F, G and H:

HWhA,At('ythrl)H%)"‘HZhﬁAt('ythrl)Hé+HTI/Z(‘:V\h,At_Wh,At)('»[n+1)||c2?771 (31a)
n
< (Ctor+1) Y (IF]5, + IG5, + HT_I/ZHHgsm)»

m=0

w5, + zn.ac I3, +12"7 (940 = wha) 35, (31b)
n
< CAi(Cu+1) Y (IFII5, + IG5, + I Hll3s, ).

m=0
(ii) Assuming that At is small enough and that T > 0 on 9Ty, the discrete problem (9)

together with (11) has a unique solution.

Proof The proof of part (i) is analogous to that of part (i) of Corollary 1 and is therefore
omitted. Unique solvability of (9) together with (11) at each time step follows from (29). O

5.2 Consistency and convergence of the non-dissipative scheme

Asin Section 4.2 we consider the projected errors e, := P ITyv — vy o;, ep := PLIIy p — p;, 4,
and /év = P Pyv— vh,Ar
Theorem 5 Setting wyar = €y, Znar = €p, WA = €, and

~

Znar =€pi= ep—T(év—éAv)n on ATy,
the equations (9) and (11) with ® = F, I' = G, A = H, and ® = 0 are satisfied for all

S Wh:l), 74S V;;A]t) and |L,m € M,S;L), provided that

F=IIyv—v—(PLV-p—V-p),
G=Iyp—p—(PLVv—Vv),
H = TPL(Hvav) — T(Hw\}*V).
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Proof Proceeding time step by time step it can be seen as in the proof of Theorem 2 that
(9b) is satisfied with I = G as required, and that (27) holds for all ¢ € W,E;;) . Since

N dJ ~
ep-n:PLHVp~nfrE(PLHvaPLPMv)fph_’Afn, (32)

we find using (21) and (3c) that

In+1 o Y
[ @+ Brar—Pip)m 0o,

Tnt1

= | [Py —v),0) 57, — (t(Twy —¥),0) 57 ] dr.

In

Combining this with (27) shows that (9a) is satisfied provided @ = F and A = H are chosen
as in the theorem.
Using (32), (3¢). (21) and (9¢) (with A = 0), it follows that for all 1 € M;

Tnt1 N In+1 . .
/t (€p n, 1)1\ 00dt = (TP (TTywv —v), ) a77000 — (T(TIwv — V), W) g 7000 ] df,

n tn
which yields (9c), and (9d) follows by the same argument used at the end of the proof of
Theorem 2. O

In addition to the bounds of Lemma 4 we have the following estimate for the consistency
error on the mesh skeleton, which follows from (4c) and the continuity of P;.

Lemma 5 Assuming sufficient regularity on the solution (as indicated by the norms on the
right hand side of the following inequality), the consistency error term on the mesh skeleton
in Theorem 5 is bounded as follows: For each0 <n <N —1,

1H |55, = [ITPL(ITwv —v) — T(ITwv —v) | 55,

< CH V- Pllygs gt 2y m8X TR K [V 001 )]

for 4,0y €10,k].

Combining Corollary 2 and Theorem 5 together with Lemma 4 and Lemma 5 yields the
following convergence result:

Theorem 6 Suppose At is sufficiently small, and that the solution (v, p) of the mixed hyper-
bolic problem (2) is sufficiently smooth in space and time that the estimates of Lemma 4 and
Lemma 5 can be applied. In addition suppose vy ar, Py 4, and Viar satisfy the CTG-HDG
problem (9) using the non-dissipative numerical flux (11) with the initial conditions

vial(-,0) =Iyvy  and phﬁAt(UO) = Ily p, in

and Vi a;(+,0) = Pyvoly, on 9Ty Then the following error estimate holds:

max ([ot)=var ()l +1PCot) = Py (1) )

< CTI/Z (héerl/ZMl (T) +hép+1/2M2(T) +Alq+1M3(T)),
[v—"vnar HLZ([O,T];LZ(Q))JFHP — Pnat ||L2([o,r];1,2<g))
< CT (W H12My (T) + WPV My (T) + At s (1)),
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for 4,0y € [0,k], where

Mi(T) < HVHHI([OA,T];HKV‘*‘I(_Q))7
MZ(T) < H V'p||H'([0,T];H£1’+I(Q)) +h]/2||pHL2([0,T];H[p+I<Q))7
M3(T) < ([ V¥l a1 o.73:22(0)) T IV Pllaas (o.11:22 ()

6 Numerical results

In this section we probe the error estimates for the dissipative scheme and for the non-
dissipative scheme established in Theorem 3 and Theorem 6 by numerical examples. We
consider the lowest order case ¢ = 1 in time when the method (9) corresponds to the im-
plicit midpoint rule. On an equidistant grid ¢, = nAz, 0 <n <N, on the time interval [0, T]
with step size At that is determined depending on the mesh parameter 4 of the spatial
mesh the numerical approximations vj . := vy ar(*,1n) € Wi, P}y 5, = Pyas(512) € V) and
17”h7m =Vt (- 1n) € My, satisfy the system of equations

(Bt ars &7 = —Bhan VEI T + Prar . E)or + ("2, 8) 7, (33a)
(8a:P pr- W) T, = — Vit VW) T+ (P W) o7, (33b)
(Phac m. o700 =0, (33¢)

<§Z,At7n>39 = <gn+1/27n>8_(27 (33(1)

for all § € Wy, w € Vj, and 1, n € My, where
fn+]/2 ::f('»[n"‘At/z) and gn+1/2 ::g('vtn+A[/2)»

as well as
n n—1 n n—1
Viat ~ Viar and o o har T Vhar
At h,Al‘ . 2 ’

and similarly for pj, 4,. Accordingly the numerical flux (10) corresponding to the dissipative
scheme reduces to

n —
SAIVhAAt =

Piai=Phac—Vha—Vhadn  on a7 (34)
whereas the numerical flux (11) becomes
EZ,At = Phac—T(0aVhar — 84V a)n  on ITj. (35)

We have implemented (33) together with (34) and (35), respectively, for piecewise con-
stant, piecewise linear and piecewise quadratic Lagrange elements in R?. The local mass
and stiffness matrices as well as the right hand side are evaluated using order 6 quadrature
rules on the triangles as well as on the edges.

Example 1 We consider a square domain = (—1,1) x (—1,1) C R?, homogeneous bound-
ary conditions g =0 on dQ x (0,7), a homogeneous source term f =0 in Q x (0,7) and
initial conditions vy = sin(7x;) sin(7x;) as well as p, = [0,0]” in Q, where x = [x1,x2]"
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Fig. 1 Errors [|(v—vi.a0)(+ 1)+ [(p = Prar) (Dl and [[(v—Fiya0) (1) 5 with &= 0 and & = 1 (iop
down) for the dissipative flux (34) (left) and non-dissipative flux (35) (right).

and as usual x” denotes the transpose of x. The corresponding exact solution of (2) is given
by

v(x,1) = cos(V/2mt) sin(mx; ) sin(7x; ),

p(x,1) = % sin(v/27r) [cos(x ) sin(7x, ), sin(7mx; ) cos(7x;)]”

This example has also been used as a test problem in [16]. In contrast to the present work
Nguyen et al. discuss the dissipative scheme only and use higher-order backward difference
formulas as well as diagonally implicit Runge-Kutta methods for time discretization.

Figure 1 shows the absolute error at time 7' = 1 in the scalar variable ||(v — vy /) (-, 1)] @,
in the flux variable ||(p — p, ;) (-,1)||@ and in the numerical trace [[(v —Vj ;) (-, 1) as
a function of the mesh parameter A for polynomial degree k = 0 and k = 1 (top down).
The plots in the left column correspond to the dissipative scheme, i.e., to the numerical
trace (34), while the right column has been obtained with the non-dissipative scheme, i.e.,
using the numerical trace (35). Here || - ||, denotes a mesh dependent norm on L?(97,,)
given by ||u|f? := YkeT, hi ||| for any p € L?(97;,). For the space discretization we use
structured meshes 7, with M = 8, 32, 128, 512 and 2048 triangles, as shown in Figure 2
(left) for M = 32, and accordingly we choose the time step size At = h. In all our examples
the coupling parameter is set to be 7= 1.

Since the time discretization used in this example is second order accurate only, we use
smaller time steps Ar = h*/2 instead of A7 = h in the corresponding plots for polynomial
degree k = 2 in space shown in Figure 3.
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Fig. 3 Errors ||(v—vpa:) (- Dlles (P = Pras) (1)@ and [|(v—Vha0) (-, 1)||5 with k = 2 for the dissipative
flux (34) (left) and the non-dissipative flux (35) (right).

After a pre-asymptotic region of slower convergence, which is more pronounced for
lower order elements in space as well as for the non-dissipative flux, we observe optimal
convergence for both numerical fluxes. This behavior is actually better than our theoretical
results predict: While Theorem 3 guarantees optimal convergence for the dissipative scheme,
we did not prove optimal order convergence for the non-dissipative scheme, missing by
a factor h'/2. However, as can be seen in Figure 3 the convergence behavior of the two
schemes is almost identical for k = 2. o

Example 2 In the second example we consider unstructured locally refined grids with M =
197, 254, 417, 629 and 1034 triangles on a non-convex domain as shown in Figure 2 (right)
for M = 254. This example is intended to show that the CDG-HDG method can be used on
locally refined grids with a time step size that is chosen consistent with the largest element
of the grid. The boundary conditions and the source term in (9) are chosen such that the
exact solution of (2) is given by the time-harmonic wave

v(x,1) = cos(or)J (K‘\ /x3 +x§) cos (€ arctan(xz /x1))

with @ = k =4 and £ = 2/3, where Jg denotes the Bessel function of the first kind of order
&. A similar example has been used as a test problem for a corresponding HDG method for



22 R. Griesmaier, P. Monk

10

10

—e— L%~error of v —e— L%~error of v

—+— L2-error of [ —+— L2-error of [

—&A— hnorm-—error of vhat| —#4— hnorm-error of vhat|
- --or?) - --or?

107 107

0.24 0.26 0.28 0.30 0.24 0.26 0.28 0.30
h h
10° 10°
—e— L %-errorof v —e— L2-error of v
—+— %-error of p —+— %-error of P
—#&— hnorm-error of vhat| —#&— hnorm-error of vhat|
- - -0 ---om)
A A A A
B m— S ———
I S et R S ol

10" I I I I I I I 10"

Fig. 4 Errors [|(v—vi.a0)(+ 1)+ [(p = Prar) (D)l and [[(v = Fa0) (1) with & = 1 and & = 2 (iop
down) for the dissipative flux (34) (left) and the non-dissipative flux (35) (right).

the Helmholtz equation in [7]. If cos(e?) # 0, the exact solution v(-,¢) has a singularity at
(0,0) such that v(-,1) € H' () but v(-,1) ¢ H*(Q).

Figure 4 shows the absolute errors at final time || (v —vj a/) (-, D)@, |(P—Pras) (5 1) |l
and || (v —Vjs) (-, 1)|| as a function of the mesh parameter / for polynomial degree k = 1
and k = 2 (top down). As before, the left column corresponds to the dissipative scheme while
the right column has been obtained with the non-dissipative scheme. The time step size in
this example is chosen to be At = A, i.e., according to the diameter of the largest triangle in
the spatial mesh. Due to the strongly local refinement of the grids near the origin the mesh
parameter & varies much less in this example than in the previous one.

The results in Figure 4 show that the method converges at the optimal rate and so indi-
cates that the method is able to handle locally refined grids as intended. o

Further numerical results for the dissipative scheme (6)—(7) using a different time step-
ping can be found in [16]. For more details on the numerical implementation of HDG-
schemes, in particular on hybridization strategies and post-processing of the numerical so-
lution we refer to [3, 15, 16].

7 Concluding Remarks

We have provided an error analysis of two fully discrete methods for approximating the
acoustic wave equation using an arbitrary order implicit scheme in time. The resulting
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CTG-HDG schemes are unconditionally stable. Although our theoretical analysis provides a
sub-optimal convergence rate for our new non-dissipative scheme, numerical results do not
indicate any loss of order, so an interesting problem is to remedy or explain this discrepancy.

The main disadvantages of the CTG-HDG scheme is that as the order of convergence
in time increases, larger and larger discrete problems need to be solved. Other Runge-Kutta
schemes such as the DIRK scheme used in [15] can avoid this, although it is still necessary
to perform an implicit solve for each stage. Extensions of the analysis to include this case
would also be useful.

A Projection estimate on the element boundaries

In this section we give a proof of the projection estimate on the element boundaries (4c). Our arguments rest
on those used in [4] to prove the corresponding interior estimates (4a) and (4b).
We start with a slight modification of Lemma A.2 of [4].

Lemma 6 Let K € Ty, T as introduced in Section 2.1, and suppose
pE€Pe(K) = {9 €Pu(K) | (9.w)k =0 forall w € Py (K)}

satisfies
(tp,9)ax =b(¢)  forall ¢ € P(K),
where b: P (K) — R is linear. Then
1/2
lepllox < il b]

N

where ||b|| denotes the operator norm of b with respect to the L*-norm on Pi-(K).

Proof Denoting by F the edge/face of K at which 7 = 7™,

max

Ipl3x = (TP, tP)ax < W™ (Tp, p)ax = R*b(p) < R |Ibll[ pllx-

Using the estimate
1/2
Ipllx < Chllpllr  forall p € Pg(K),

which has been shown in Lemma A.1 of [4], gives

1/2 1/2 1/2
Itpl3x < T8 (BlIChY[IplF = IBIICHY T8 pllr < Chy* Bl Tpll k-

The following proposition should be compared to Proposition A.2 of [4].
Proposition 1 Suppose k > 0, and let K € Tj, and T as introduced in Section 2.1. Then,
[[T(ITww—w)llax < Chll</2 (hﬁ? [V-2l e g + TR [ g1 (K))
for £y, L, € [0,k].
Proof Denoting 8" := ITyw — wy, where wy, is the L>-projection of w onto P (K), we have
le(ww—w)llox < 1T(w—wi)llogx + 178" |k

Applying a trace inequality and the approximation properties of the L2-projection the first term can be esti-
mated by

. ax ;. —1/2
I =willar < & lw—willax < T’ (1w = willic -+ il — Wl )

by +1/2
< Ce™hg / Wl gtws1 (k) -
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To estimate the second term we recall that on each element K € 7, the component ITyyw satisfies

(Iyww,¢)k = (W, )k for all ¢ € P, (K),
(tTyw, $)ox = (V-2,0)k + (Tw,9) o for all ¢ € P (K)

(see Proposition A.1 of [4]). This implies that §" € 'PkL and

(18" 0)ax = bu(0) +b:(¢)  forall g € P (K).

where by, (¢) := (T(w—wg), )9k and by (¢) := (V-z,¢)k. It has been shown in the proof of Proposition A.2
in [4] that
ax 7 by 2
[l < CTR“ R Wl () and[[bz]| < Chig[ V-2l ez x)-

Since by Lemma 6,
, 1/2
128" lax < Ch*(lbull + 15211,
this ends the proof. O
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