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Abstract

We consider scattering of time-harmonic plane waves by an ensemble of well-separated
compactly supported inhomogeneous scatterers. The far field operator, which maps super-
positions of plane wave incident fields to the far field patterns of the associated scattered
fields, is commonly used as an idealized description of data sets obtained in corresponding
remote sensing experiments. Suppose that some a priori information about the approxi-
mate position of just one of the scatterers in the ensemble is available. This article is about
recovering the far field operator associated to this single scatterer from the far field operator
associated to the whole collection of scatterers. Due to multiple scattering effects this is
a nonlinear inverse problem. We show that an approximate solution can be obtained by
decomposing the far field operator into a sparse component and a low-rank component,
and we apply a convex program called principal component pursuit for this purpose. We
give necessary and sufficient conditions for unique solvability, establish a stability result and
provide numerical examples to illustrate our theoretical findings.
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1 Introduction

This article is concerned with far field operators for the scattering of scalar time-harmonic
plane waves by compactly supported inhomogeneous obstacles. These operators are defined in
terms of the far field patterns of scattered fields corresponding to plane wave incident fields at
a single frequency for all possible observation and incident directions. Far field operators map
densities of superpositions of such plane waves to the far field patterns of the associated scattered
fields. They are a popular model for remote sensing observations in inverse scattering theory
and their properties have been widely studied in the literature. It is, for instance, well known
that the refractive index of a bounded penetrable scattering object is uniquely determined by
the associated far field operator (see [4, 36, 38, 40]). Accordingly, far field operators are at
the foundation of many successful reconstruction methods for the inverse medium scattering
problem (see, e.g., [1, 10, 11, 14, 21, 30| and the monographs [5, 6, 13, 33]).

We shall study a particular data splitting problem for far field operators corresponding to
ensembles of finitely many well-separated penetrable scatterers. Well-separated means here that
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the diameters of the supports of the scatterers in the ensemble are small compared to their
distances to each other. Assuming that the approximate locations of all scatterers in such an
ensemble are available a priori, it has recently been shown in [22| that approximations of the
far field operators associated to each scatterer individually can be recovered given the far field
operator associated to the whole collection of scatterers. Due to multiple scattering between the
different scatterers in the ensemble, which has to be disentangled and removed by the splitting
method, this is a nonlinear inverse problem. The algorithms developed in [22] crucially rely
on sparse representations of the far field operators corresponding to the individual scatterers in
the ensemble, which are determined by the a priori information on their approximate locations.
Using these sparse representations, either least squares or a convex program called basis pursuit
(see, e.g., [9, 17, 18]) has been applied to recover the unknown far field operator components
in [22].

In this work we aim to significantly reduce the required a priori information compared to [22].
We ask whether it is possible to extract the far field operator associated to a single scatterer in an
ensemble of well-separated compactly supported scatterers from the far field operator associated
to the whole ensemble, assuming that just the approximate location of this single scatterer is
known, but nothing about the other scatterers. In other words, our goal is to isolate or split
off the information about a single scatterer contained in the far field operator for the whole
ensemble. As in [22], the a priori information on the position of the single scatterer allows for
a sparse representation of the associated far field operator component that we aim to recover.
Moreover, we will show that the remaining part of the far field operator can be approximated by
a low-rank operator, which however is not sparse. Accordingly, the inverse problem is equivalent
to recovering a sparse operator given the sum of this sparse operator with a low-rank operator
plus some modeling error and possibly some data error. We show that a convex program called
principal component pursuit (see |7, 8, 44]) can be applied for this purpose, and we establish
necessary and sufficient conditions for unique solvability as well as stability estimates in the
context of far field operator splitting.

Previous investigations of far field splitting based on suitable sparse representations of far
field patterns have mainly been concentrated on source problems or scattering problems with
a single incident wave. However, the basic reasoning developed in [20, 23, 24, 25, 26| is closely
related to the perspective taken in the present work. Other approaches to wave splitting for
time-harmonic inverse source problems have been proposed in [3, 39]. Furthermore, splitting
problems for time-dependent scattering problems have been considered in |2, 19, 28|.

The remainder of this article proceeds as follows. In Section 2 we briefly outline the theoret-
ical background on the scattering problem and discuss sparsity and low-rank properties of far
field operators. Then, in Section 3, we describe how principal component pursuit can be used
to approximate solutions to the splitting problem considered in the paper, and we analyze the
stability of this approach. Numerical results are given in Section 4, and we finally close with
some conclusions.

2 Inhomogeneous medium scattering

Before we discuss sparsity and low-rank properties of far field operators associated to ensembles
of compactly supported scatterers, we summarize some facts and basic notations concerning
the direct scattering problem. We consider time-harmonic scattering from penetrable scatterers
modeled by the Helmholtz equation in R?. Let k > 0 denote the wave number and n? = 1+ ¢
the index of refraction for a real-valued compactly supported contrast function ¢ € L*°(R?)
satisfying ¢ > —1 a.e. in R? and ¢ = 0 a.e. in R?\ D for some bounded open subset D C R2.
We call D the support of the scatterers and below we will assume D to be the union of a few



well-separated connected components.
Suppose the scatterers are illuminated by an incident plane wave

ul(x;d) = ehTd, x € R?, (2.1a)

along the illumination direction d € S'. Then the total field u, € Hl _(R?) and the associated
scattered field uy = u, — u® solves the Helmholtz equation

Aug + k*n*uy = 0 in R?, (2.1b)

together with the Sommerfeld radiation condition

S

)
lim ﬁ(%(m;d) —ikug(wd)) =0, r=l|a| oo, (2.1¢)
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uniformly with respect to all directions x/|z| € S'. We often indicate dependencies on the
illumination direction d by a second argument and dependencies on the contrast ¢ by a subscript.

The unique weak solution u, € H (R?) of (2.1) (see, e.g., [32, Thm. 7.13]) exhibits an
asymptotic expansion as an outgoing cylindrical wave

ei7'r/4 eik|w|
V8T \/kl|x|

uniformly in all observation directions Z = x/|z| € S* (see, e.g., [32, Thm. 7.15]). Here, the far
field pattern ug® € L?(S!' x S1) is given by

ug(z;d) =

u®(@d)+0(jz[72), |z = oo,

u” (%;d) = kz/ q(y)ug(y; d)e *2Y dy | zecSt. (2.2)

D

Accordingly, the far field operator
R IXS) 5 IX(SY) . (Fe)@) = [ (@ dald) ds(a). (2.3

which is determined by the far field patterns ugo(ﬁ; d) for all possible observation and incident

directions Z,d € S!, is often considered as an idealized measurement operator for remote sens-
ing experiments in inverse scattering theory. This operator is well-known to be compact and
normal (see, e.g., [32, Thm. 7.20]), and it is of trace class (see [12|) and thus in particular a

Hilbert—Schmidt operator. For later reference we denote the space of Hilbert—Schmidt operators
on L?(S') by HS(L?(S1)).

2.1 Far field operator splitting

To simplify the presentation we restrict the discussion in the following to ensembles of two
scatterers. Accordingly, we assume that the scatterer D = D1 U Ds consists of two well-separated
components Dy, Dy C R? such that Dj; C Bg,(cj), j = 1,2, for some Ry, Ry > 0 and ¢1,¢2 € R2
satisfying |c¢; — 2| > Ry + Ra, and we denote ¢1 := ¢|p, and g2 := q|p,. However, we note that
our analysis immediately extends to the case when D\ D; consists of more than one component.

Let us first recap the far field operator splitting problem as considered in [22]. Given the far
field operator Fj, the wave number k and sufficient a priori information on the location of D
and Dy (i.e., about ¢; and ¢3) the goal in [22] was to recover the far field operators F, and F,
corresponding to the two individual components of the scatterer. The procedure in [22] is based
on splitting the given data into three parts,

Fq = Fq1 +Fq2 "’Fquqza



and approximating each of these three components by sparse operators with respect to certain
suitably modulated Fourier bases of L?(S!). In this decomposition Fy, 4, = F, — (Fy, + Fy,)
represents those multiple scattering components that involve scattering both on ¢; and ¢o and
therefore can neither be assigned to F, nor to F,,. Accordingly, Fy, 4, is the part of F, that
has to be removed when recovering F,, and Fy,.

In this paper, we consider a modified version of this far field operator splitting problem.
We assume that only a priori information on the approximate location of D; (i.e., about ¢;) is
available, and we are only interested in recovering the far field operator Fj, associated to the
first component of the scatterer. Accordingly, we split the given far field data

Fy = Fq1+Fq\q1

into two parts. Our strategy remains to approximate I, by a sparse operator with respect to the
same modulated Fourier basis as before. However, in contrast to [22], we now approximate the
remaining part F,, by an operator of low-rank, which does not require any a priori information
on the approximate location of Dy (i.e., about ¢2).

2.2 Sparse and low-rank approximations of far field operators

If u, € HL (R?) is the solution to the scattering problem (2.1), then uq|p € L?*(D) satisfies the
Lippmann—Schwinger integral equation

ug(x; d) = u'(z;d) + k? /}R2 q(y)®(x — y)uy(y; d) dy, xeD.

Here, ®(x) := iH(()l)(k\a:D, x # 0, denotes the fundamental solution to the Helmholtz equation

(cf., e.g., [32, Thm. 7.12]). Introducing L, : L*(D) — L*(D) by

(Lof) () = K2 /D (W) (W)e@—y)dy, weD,

yields the Born series representation

ui(+;d) = (Ly)w'(+;d)  inR?, (2.4)
=1

of the scattered field, provided that the operator norm ||Lgy|| is strictly less than one (see,
e.g., [29, 31, 37, 41, 42] for more detailed discussions). Neglecting terms of order [ > 3 in (2.4)
(i.e., considering the second order Born approximation) and substituting the result into (2.2)
and (2.3), it has been established in [22] that the far field operator can be approximated in terms
of

Fy~ Fi+F+ (Fio+ Fai), (2.5)

where Fy =~ F,, and Fy =~ Fj, denote the second order Born approximations of the far field
operators Fy, and Fy, associated to the two components of the scatterer in D1 and Dy, respec-
tively, and Fy o+ Fb 1 ~ F, — F,, — Fy, is the second order Born approximation of the remaining
multiple scattering effects.

Denoting by (e,,), := (#%(*) /\/21),, the standard Fourier basis of L?(S'), and introducing
the far field translation operator

Te, : L*(S") = L*(SY), (Te,9)(&) := " %g(7), (2.6)
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Figure 2.1: Left: Support of two scatterers Dy, Dy (solid) contained in discs Bg, (¢1), Br,(c2) (dashed).
Center and right: Absolute values of modulated Fourier coefficients (@m,n)m,n of far field operator
components Fy, (center) and Fy\,, (right) at wave number k£ = 1. Dashed square (center) and dashed
cross (right) correspond to active coefficients in sparse approximation of F,, in Vj‘\:,ll with N1 = 7 and to

those in low-rank approximation of Fy\,, in W2 with Ny = 7, respectively.

we define the finite dimensional subspaces VJC\?JCJ(,I C HS(L?(SY)) for all possible combinations

of j,1 € {1,2} by

VRS, = {G € HS(L2(SY)) ‘ Gg= 3 3 amnT cem(9. T cien) gty Gmn € c}.

Im|<Nj |n|<N;
(2.7)
We also use the short hand VX;] = J(ifjﬁifjv j = 1,2. One of the main outcomes of [22] has
been that the far field operator components Fi, Fb, Fi2, and F5; in the second order Born

approximation (2.5) of the far field operator F, can be well approximated in Vcll, V]‘?Q, Vﬁ}l’ﬁ\%,

and Vﬁé"fh, respectively, whenever we choose N1 2 kR; and Ny 2 kRs. Here the notation 2

~

means “‘somewhat larger”. Corresponding approximation error estimates have been provided
in [22, Lmm. 3.4].
For moderate values of N1 € N the approximation of Fy in V§, as in (2.7) can be considered

to be sparse, because it involves at most (2N7 + 1)? nonzero coefficients. Defining another finite
dimensional subspace W32 C HS(L?(S')) by

W = {G € HS(L2(SY)) ‘ Gg= Y (T,czen<g,an>L2(sl)
|n| <Ny (2.8)

+ 5n<g7T—cge’n>L2(Sl)> Y anw@n € LQ(Sl)} 9

we immediately observe that V;,jj’cll C W]C\fz whenever j = 2 or [ = 2. Consequently, the sum of

operators Fy + F1 2 + Fb 1 can be well approximated in W]‘i,é Since
rank G < 2(2Ny + 1) for any G € Wy, ,

this implies that for moderate values of No € N the approximation of F5 + Fy 2 + Fb 1 in WJCVZ
as in (2.8) is low-rank.
To sum up, the idea in the following is to compute a sparse operator Fy € Vﬁ}l and a low-rank
operator L € Wi such that
Fy,~Fi+L (2.9)

and to approximate Fy, by Fy and Fp\,, = F, — Fy, by L.



Example 2.1. We illustrate the essential supports of the modulated Fourier coefficients of Fy,
and F, by a numerical example with ¢ =xp, —0.5xp, for D; and D3 as shown in Fig-
ure 2.1 (left). Using a Nystrom method (see, e.g., [13, pp. 91-96]) for the associated trans-
mission problem, we simulate the far field patterns ug®(Zy,; dpn) and ugy (Zm; dpn) for M = 170

q
equidistant observation and illumination directions on S' at wave number k = 1. The matrices

%[ug?(fm;dn)]lgmmgj\/j and Fq\q1 = 2M7T

then approximate the far field operator components Fy, and Fp, . The dashed discs in Fig-
ure 2.1 (left) are centered at ¢; = (—28,—30)" and cp = (26, —3)" with radii Ry = Ry = 5,
respectively. Taking the two-dimensional Fourier transform of Fy, and F,, after multiplica-
tion with the appropriate modulation factors yields an approximation of the modulated Fourier
coefficients (@m,n)m.n of Fy, in terms of (T_¢ e,), and of Fy, in terms of (T¢,e,)n, respec-
tively. In Figure 2.1 (center, right) the absolute values of these modulated Fourier coefficients
are plotted using a logarithmic color scale. In the plot in the center, it can be observed that
they are essentially supported in a square [~ N7, N1)2 for Ny =7 > 5 = kR;. In the right plot,
the coefficients with the largest magnitude are essentially supported in the cross-shaped index
set {(m,n) : |m| < Ny or |n| < Ny} for Ny =7 2 5 = kRy. However, the contribution of the
coefficients outside the cross-shaped index set is larger than in the middle plot, which leads to
a larger approximation error for the projection of Fy,, onto WK@ compared to the projection
of Fy, onto V]‘i,ll. This is caused by those far field operator components of scattering order three
or higher, that can actually be approximated well in Vcll, but belong to Fy4, and not to Fy,. O

Fy, = [u;’o(fm; dn) — Ugf(‘/im§ dn)]lﬁm,nSM

The splitting ansatz in (2.9) will only work reliably if we can ensure that the low-rank
operators in WK?Q do not have a sparse representation in vall. The following section addresses
this question.

2.3 When does sparse plus low-rank far field operator splitting work?

To avoid cluttered notation we write V := V]c\}l and W = W]cvz in the following. We denote the
orthogonal projections onto V and W by Py and P)y, respectively, and we define Py, :=7 — Py
and Py :=7Z — Pwy.

Operators G = G1 + Ga € V 4+ W can be uniquely decomposed into G; € V and Gy € W
if and only if VN W = {0}. This is the case if and only if the cosine of the minimal angle
between V and W,

(G, H)us
VP = e B TCThs T Hs (210
is strictly smaller than one (cf., e.g., [15, Lmm. 2.10]). Moreover, the smaller ||PyPyy | is, the
more robust splitting becomes with respect to noise in the data GG. Thus, the aim of this section
is to develop an upper bound for ||PyPyy ||, similar to what has been established in [22, Props. 3.8

and 3.14|. We start with some additional notations and technical remarks.

Remark 2.2. Apart from the usual Hilbert—Schmidt norm, we will also use some other norms
on HS(L?(S')) in our analysis below. We first recall that any operator G € HS(L?(S')) can be
expanded in terms of the Fourier basis (e,), C L?(S!) via

Gf =3 > ammen(fien)zsy. g€ L(SY), (2.11)
meZnEZ

with Fourier coefficients (amn)mn = ((Gen,em)r2(s1))mn € 2 x 2. For 1 < p < oo this
representation gives rise to the norms

IGllerxer = l(amn)mnllerxe, G € HS(LA(SY)),



at least if the right hand side is finite. On the other hand, G € HS(L?(S')) also possesses a
singular value decomposition

Gf = Zanun<favn>L2(51)v f€L2(51)7

neN

with singular values (0y,), € #2 and singular vectors (un)n, (vn)n € L2(S'). Therewith the
Hilbert-Schmidt norm of an operator G' can be written as ||G||us = ||(on)n|¢2, its nuclear norm
as ||Gllaue = ||(on)nlln and its operator norm as ||G|| = |[(on)nll¢o. Furthermore, Parseval’s
identity shows that

(G,H)ug = (G, H)ppypr  for G,H € HS(L*(S1)).

We also denote the number of nonzero coefficients (@ n)m,n in (2.11) by ||G||po w0 and we recall
that the number of nonzero singular values (oy,), of G coincides with rank(G). O

To relate the modulated Fourier bases in the definitions (2.7) of V and (2.8) of W to the
unmodulated Fourier basis (e,),, we introduce for any ¢ € R? the operator

Te: HS(L*(SY)) — HS(LA(SY)), TG := T.0GoT. ., (2.12)

where T, has already been defined in (2.6). The mapping properties of T, have proven to be
an essential tool in [22]. To begin with, we note that Fy (. ., = T¢;Fy; for j = 1,2, and
accordingly the subspaces V and W can be rewritten as

V = {GeHS(L*(S") | Te,G€VR,} and W = {G e HS(L*(S")) | Te,G € WR,} .
The following lemma presents further results that are relevant for this work.

Lemma 2.3. Let ¢ € R? with ¢ # 0. Then,

(a) Te is a unitary operator on HS(L?(S1)) with To* = T_e,

(b) Te preserves the norms || - ||lus, || - [laue and || - || as well as the rank, and
(c) for any ¢ € R? and N € N, we have that

ITeGlleoxe < 265 Gllns. G € WY, (2.13)

where

By = sup( Z J2( k|c|> <m1n{ b 2]Z|:|1} (2.14)

neZ In/—n|<N
with b ~ 0.7595.

Proof. Part (a) follows immediately from the definitions (2.6) and (2.12) of T, and T, (see |22,

Lmm. 2.2]).
Since applying the unitary operator 7. does not change the singular values of an opera-
tor G€ HS(L?(S1)), part (b) follows from the characterizations of || - |lus, || - |lauec and || - || in

terms of the singular values at the end of Remark 2.2.
Part (c) requires a bit more effort. By definition (2.8) of W$ and since

{(m/,n")||m'| <N or |n/| < N}
= {(m,n)|m eZ, || <N}yU{(m',n')||m| <N, 0| >N},



we can write any G € WY as
G = E E am’ ! em’<'7en’>L2(Sl) + E Z Am/ n! em’('aen’>L2(Sl) .
m!€Z |n/|<N |m!|<N |n!|>N

We conclude by expanding Tce,, in terms of (e;), and Tee, in terms of (e,), that the
coefficients (ay, ,,)m,n in the Fourier expansion of T.G as in (2.11) are given by

c
U = § Z W (Te€ms, em>L2(51)<em Tcen’>L2(Sl)
m/€Z |n'|[<N

+ Z Z Ay’ ! <Tcem/, €m>L2(Sl) (en, Tcen/>L2(51)
|m/|<N |n'|>N

for m,n € Z. Throughout this work, (-, -) r2(s1) is linear in its first and antilinear in its second
argument. Accordingly, applying the Cauchy—Schwarz inequality we deduce that

[ TeGllesexeee = (/@ )m.nll oo e

<2 SUP(Z ‘<Tcem’vem>L2(Sl)|2) S“P< > |<Tcen”en>L2(Sl)|2)||GHHS = 285|Gllus -
meEZ meZ nez In'|<N

For the last equality, we used that |(Tee,,en)r2(sn)|* = J2_,,/(klc|) due to the Jacobi-Anger
expansion

Y = N (i)t M EY T (kly|)eET . yeR?, T e S, (2.15)

neZ
and that ||(Jm(k|c|))mllez = 1 (see, e.g., [16, Eq. (10.23.3)]). Applying the uniform upper bound
for the Bessel functions from [34, Thm. 2| finally gives the second inequality in (2.14). O

Now we are ready to establish an upper bound for ||PyPyy| from (2.10).

Proposition 2.4. For all G € V and H € W we have that

G, H 8(2NN- 1)v/2N- 1
‘< ) >HS| <2 /||TC1G||€0><ZO ﬂZC\;Q—Cz < ( 1+ ) 2+ ' (216)
HGHHSHHHHS 5\/]43‘01 —62’

Proof. We use Lemma 2.3, Holder’s inequality and the inequality || - || < || - ||us to estimate

’<G7H>HS‘ - ’<7-61G77-C1—Cz(7-02H)>€2><€2‘ < HT81GH€1><€1H7-61—C2(7-C2H)”f°°><4°°
< 20/ Tey Glloxeo By, N TerGllusl| Te, Hllns = 24/ | Te, Glloxe BN, “IGllusl|H ||ns -

Recalling that || Te, G|y < (2N7 + 1)% for any G € V, and using the upper bound for By, <
from (2.14) completes the proof. O

Remark 2.5. Using the Jacobi-Anger expansion (2.15) we can rewrite

Bae = sup( E |(T_CQen/,T_clen>L2(Sl)‘2>‘
nez ;
[n/|<Na

This shows that 83~ is a measure of incoherence of span{T_c,e, : |n'| < Na} C L?(SY)
with respect to the orthonormal system {T' ¢, e, : n € Z} in L*(S"). If B3 is small, this
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Figure 2.2: Plots of 837~ (dotted blue) and of the upper bound from (2.14) (dashed red) as function
of t = k|e; — 2| on a double-logarithmic scale for No = 5 (left) and for Ny = 10 (right). The level 0.1

(solid gray) is attained by 37 for ¢ > 191 in the case Ny = 5, and for ¢ > 372 in the case Ny = 10.

The upper bound falls below the level 0.1 only for considerably larger values of ¢, namely for ¢ > 635
when Ny = 5 and for ¢ > 1212 when Ny = 10.

means that operators in VW cannot have a sparse representation in V. We note that Bﬁ};”

corresponds to 3(S) as introduced in [8, Eq. (4.6)] for S = span{T_,e,s : |n/| < Ny} and the
n-th standard basis vector replaced by T_, e,, n € Z. We also refer to [27], where a similar
notion of incoherence was considered.

Our numerical results in Figure 2.2 suggest that the upper bound of val;CQ in (2.14) is
of optimal order but not sharp. To generate these plots, we have used the superlinear decay

of [Jin(t)] in |m| for |m| > [t|, which ensures that the supremum in the definition of 3~

is already attained for moderate values of n € Z, to calculate ﬁ]c\};'a numerically. However,
the upper bound in (2.16) gives a good qualitative impression of sufficient conditions for the
geometry of the scatterer to allow for stable splitting. The smaller the diameters of the two
components are and the farther apart they are from each other, both in terms of the wave
length, the smaller this bound becomes. Here, the size Ry of the first scatterer has a stronger

influence than Rs. O

In the next section we examine a convex program called principal component pursuit to
approximate F, based on a priori knowledge of ¢;.

3 Far field operator splitting by principal component pursuit

Suppose that (F7,L) is an approximate split of the far field operator Fj as in (2.9) such
that Fy € V is sparse and L € W is low-rank. Following [44] we consider the constrained
optimization problem

minimize

o |FY — Fy — Lllns < 6,
Fi,LeHS(L2(S1)

))\HTclEHlep + |2 e subject to (3.1)

to recover an approximation of (Fy, L) from possibly noisy observations Fg € HS(L?(SY)) of F,.
Here A\ € (0,1) is a coupling parameter that will be specified below. The parameter § > 0 not
just accounts for the data error Fcf — Fj, but also for the modeling error F,, — Fy — L that is
caused by the sparse plus low-rank approximation according to (2.9).

Before we address the stable recovery of (Fi, L) by means of (3.1) in Theorem 3.5 below, we
establish conditions on the diameters of the supports of the scatterers Dy and Dy and on their
distance to each other in terms of the wave length that guarantee uniqueness of solutions to the
unrelaxed optimization problem

minimize Fi+L= ﬁl + L.

1 subject to
Fy,LEHS(L2(S)

)AHTclﬁluelxel + | Ll ue (3.2)

9



The latter is commonly referred to as Principal Component Pursuit (PCP). We note that in PCP
the aim usually is to recover the low-rank matrix L — the principal component — while the sparse
matrix component typically is of less interest. However, in our setting it is the other way round
as our main goal is to recover the sparse component Fj.

For any Fy, L € HS(L?(S')) we write
UA(F1, L) = A Te, Filler st + | D e (3.3)

A characterization of the subdifferential of ¥y in (F, L) (see, e.g., [8, p. 580]) will be required in
the proof of Proposition 3.1 below Denoting the Fourier coefficients in the series representation
of Te, F1 as in (2.11) by (a5} ,)mn and by (0n;un,vn)n a singular system for L, we introduce
the two operators

= 2(2N3+1)
Z Z m,n Clem< . vT*Cle”>L2(Sl) and Ag:= Z un< >L2 1y - (3.4)
|m|<Ny |n|<Ny n=1

The following proposition is similar to |7, Lmm. 2.5] and [8, Prop. 2]. However, the translation
operator T¢, in (3.3) requires some subtle changes.

Proposition 3.1. The pair (Fi, L) is the unique minimizer of (3.2) if
(a) there holds [|[PyPw| < 1/2 and
(b) there exists a dual certificate W € HS(L?(S1)) satisfying

PwW =0, [W[<g, [PvA-AZ+W)lus <7, [TePyr(A+ W)l < 5. (3.5)

Proof. Assume that the conditions (a) and (b) are satisfied. Since any feasible pair (ﬁl,i)
for (3.2) can be written as (F; — G, L + G) for some G € HS(L?(S')), we have to show

‘IJA(Fl -G, L+ G) > \I’A(Fl,L)
whenever G # 0. Let Z; € 0||Te, Fil|lp <o and Zp, € J||L||nue be arbitrary subgradients, i.e.,

Z1 = X+ Gy for some G1 € VJ' with ||T31G1”goo><goo <1, (36&)
Zp = A+ Gy for some G € Wt with |G| < 1. (3.6b)

Then the subgradient property gives
U(F1 —G,L+G) > ¥\(F1,L) — XZ1,G)us + {(Z1,G)us - (3.7)
We can choose G and G, satisfying (3.6) such that
(G1,PyrGlus = —||Te,PyrGllaxn and  (Gr, Py1Glus = [[PywiGllnue -

For G this can be achieved by picking

-2 2

|m|>N1 |TL|>N1

b7cnn
b2 T—c,en- aT—01en>L2(Sl)

with (bS!,,)m.n denoting the Fourier coefficients in the series representation of T, G as in (2.11).
The operator G, can be constructed using the duality of || - || and || - ||nuc as outlined in the proof
of [7, Lmm. 2.5|. Inserting this into (3.7) we obtain

U\(FL— G, L+G) > UA(F1,L) + UA(PprG, PpyiG) — |(AS — A, G)us| . (3.8)
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Rewriting A —AX = Py(A = AL+ W) + Py (A+ W) — W and using Hélder’s inequality as well
as Lemma 2.3 (a)—(b) and the assumption (b) of the proposition, we can bound the third term
on the right hand side of (3.8) by

AS = A, G| < [(Pu(A = AS + W), sl + [Py (A+ W), Ghs| + (W, Gl

< 2PyGllis + 2T o Pt Gl s + L[PG (39)
= 7 I7VYIHS et Myt Uil xet 2 1 PwL nuc -

Using condition (a) of the proposition we conclude that

[PvGllus < IPyPwGllus + [PyPw.Gllas < 3lGllus + Py Gllus

= 3lIPvGllus + 5l1Py+ Gllus + [Py Gllus -
Combining this with || - [[as < [| - [[1xe and || - [Jzs < || - [lnuec we obtain that
PvGllus < [1Ter Py Gllerser + 2Py Gllnuc - (3.10)
Inserting (3.10) into (3.9) and the result into (3.8) finally yields
Ur(Fi = G, L+G) > U\(FL L) + 3 (| Tes Py Gl + (1= N[PyiGllae) - (3.11)

The second term on the right hand side of (3.11) is nonnegative and vanishes if and only
if PpiG =Py G =0, ie., if and only if G = 0 as VN W = {0} due to condition (a) of the
proposition. This ends the proof. O

In Proposition 3.3 below, we establish sufficient conditions on A, k, N1, Na and |¢; — ¢
such that the conditions (a) and (b) of Proposition 3.1 are fulfilled. For this purpose we define

o= sup |G| and &= sup  [|T¢,Glleexee,
GEV, || Te; Glleoo x oo <1 Gew,||G|I<1
which correspond to p(Fi) and £(L) as introduced in [8, Eq. (1.1), (1.2)]. The number ¢
being small means that for any G € W the translated operator T, G is not too sparse with
respect to the Fourier basis (ey),. If the product of p and & is sufficiently small, we can use
arguments developed in [8] to establish uniqueness of the minimizer of (3.2). The following
lemma expresses p and £ in terms of k, N1, N and |¢; — ¢2|.

Lemma 3.2. There holds
= 2Ny +1 and £ <28y,

with By, as in (2.14).

Proof. The upper bound for ¢ follows immediately from (2.13).
For p we conclude from Lemma 2.3 (b) and Parseval’s identity for any G € V with (ag! ,)m.n
denoting the coefficients of the series expansion of T, G as in (2.11) that

IGIl = [Te, Gl = sup [Ty G)fllr2sr) = Y. (TG fem) 3o

1125, =1 sz =1 | i

= sup Z

112251y =1 \ |m)<ny

< 2Ny + 1) T, Gl e -

Z am n<fa en>L2(Sl)

[n|<Ny

This yields ¢ < 2N;+1 and since the upper bound is attained for f = Z|m|§N1 T ¢ em/(2N1+1),
we obtain equality. O
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The following proposition adapts the sufficient conditions for uniqueness of minimizers es-
tablished in 8, Thm. 2| for our far field operator splitting problem.

Proposition 3.3. The conditions (a) and (b) of Proposition 3.1 are satisfied for

8B 2 2(1 — 16(2N; + 1)285 <2
L e 5%, 20 160N + 1)) 3.12)
1—8(Ny +3)(2N; + 1)83. 7 15(2Ny + 1)

provided 2(2N7 + 1)25]6\};C2 < 1/8 and provided N1 and B]C\};CQ are small enough so that above
interval is a subset of (0,1).

Proof. The condition (a) of Proposition 3.1 holds due to Proposition 2.4 because our assumptions
guarantee that 2(2Ny +1)83 " < 1.

For (b) we have to show that there exists a dual certificate W € HS(L?(S1)) satisfying (3.5).
To this end we follow a similar strategy as was used in the proof of [8, Thm. 2|. Since VNW = {0},
we can choose W =AY + 1 + Ey, € VB W with By € V and Ey € W such that

PwW =0 and  |Py(A—AZ+W)|us < 5.
From (3.4) we immediately obtain that
[T, E|eeoxee = Al = 1, (3.13)

and since PyyW = 0, we conclude that Fy = =Py (AL + Ey).
Next, we denote by Py : L2(S!) — L%(S!) the orthogonal projection onto

U = span{T_c,en | In| < No}.

Then, we can rewrite PG = PyG + GPy — PyGPy for any G € HS(L?(S')), which im-
plies |PwG| < ||PuG| + ||(I — Py)GPy|| < 2||G]|. Combining this with the definition of
and (3.13) we obtain that

[E2ll < 2p(A + [[Tey Erlleso xeee) - (3.14)
Furthermore, we deduce from
A
7 2 IPv(A = A8+ Willns 2 —(2N1+ 1) Te, Po(A + Ez)lleexee + ([ Te, B fleso e
> —(2N1 4+ 1) Te, (A + E2)lee xeoe + | Ty B[ g0o o

the definition of £ and (3.13) that

A
ITeiErllesoxee < 7+ (2N1 + 1)1+ || B2]])E - (3.15)

Combining Lemma 3.2 with the assumptions of the proposition, we obtain that
2 pe1—c
2(2N1 + 1),u£ < 4(2N1 + 1) /8]\}1 2 < 1.
Accordingly, substituting (3.14) into (3.15) and solving for || Te, E1 || xeeo gives

(2N1 + 1)€ + (2(2N1 + Dpé + A

E1||goo oo < 3.16
Similarly, inserting (3.16) into (3.14) yields
5
SUA+2(2N1 + 1
B < A 2CHM T Dig (317)

1= 22N, + )€

12



The definition of p and (3.13) show that
W < sl Tey Ellese e + pl| Tey Erllee oo + [ E2ll < p(A + [|Tey Erllesoxee) + ([ B2, (3.18)
and using the definition of £ and again (3.13) gives
[Tes Pyr (A +W)llgeo oo < [ Tey (A4 En)llgmoxee < §(1+ || E2f])- (3.19)
Inserting the upper bounds (3.16) and (3.17) into (3.18) and (3.19), we conclude that

Wl<3 and (| Te,Pys(A+W)lleexex < 3

if
‘e ( A¢ 2(1 — 16(2NV; + 1),@)
1—4(Np + 3)u€’ 1541 :
i.e., we have constructed a dual certificate W € HS(L?(S1)) satisfying (3.5). Applying Lemma 3.2
once more finally gives (3.12). O

Remark 3.4. Unfortunately, Proposition 3.3 is of limited practical relevance, as already for
rather small values of N1 2 kRy, the value of k|c; — ¢3] must be very large for the assumptions
of Proposition 3.3 to be fulfilled. However, our numerical reconstructions below illustrate that
even when the assumptions of Proposition 3.3 are not fully met, far field operator splitting by
principal component pursuit still gives satisfactory results. O

Now we turn to the relaxed minimization problem (3.1) and show a stability estimate for
far field operator splitting with noisy data. A related stability estimate for sparse plus low-rank
matrix splitting has been established in [44, Prop. 4], and we adapt and generalize this result for
the far field operator splitting problem considered here. In Theorem 3.5 below F(? € Vy repre-
sents a discrete version of the far field operator F, € HS(L?(S')). Since we assume throughout
this work that the whole ensemble of scatterers is compactly supported, there exists a smallest
radius R > 0 such that D C Bgr(c;) is contained inside the ball of radius R around ¢;. Ac-
cordingly, the results from [22| say that choosing N 2 kR is sufficient to obtain an accurate
best approximation of Fy in V. Furthermore, F(f € Vy denotes a discretized noisy observation
of Fy,. The bound ¢y in (3.20) accounts for the approximation error of the discretization of Fj
by F(? and also for the modeling error Fy, — Fy — L of our sparse plus low-rank ansatz from (2.9).
On the other hand, the data error Fg — F; is bounded by (3.21), which also guarantees (Fy, L)
to be feasible for problem (3.22). We note that the only a priori information required by (3.22)
is the approximate position ¢; of the component D of the scatterer.

Theorem 3.5. Suppose that Fg, Fq‘s € Vy for some N € N, and let ¢, ¢ € R? and N1, Ny € N
with N1, Ny < N. Let C§~% = 2(2N1 + 1)By "% < 1/2 and assume that there evists a dual

certificate satisfying the conditions in Proposition 3.1. Furthermore, we assume that F1 € V
and L € W are such that

max{||Fy — (Fy + L)oo, [1Fg = (F1 4 L)llwuc s 1T = Pyer) Lllie } < o (3.20)
for some 9y > 0. Suppose that § > 0 satisfies
§ > 200 + | FY — F|lus (3.21)
and let (F{, L°) € V§ x V§! denote the solution to

minimize U)(Fy,L)  subject to  |[FS — (Fy + L)|us < 4. (3.22)
Fl,LEVJCVI
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Here, we choose A = n/+/2N +1 < 1/2 for some n > 1. Then, there exists a constant C > 0
such that

1F — FO|2g < 0(1 +(14+(1—-CE ) )N + 1)2)52 (3.23a)
and
IL — L9)2g < 0(1 + (14 (1-C2)" 1) (2N + 1)2)52 . (3.23b)

Proof. We use the notations Fy := L —F, L:=L-L% Gt :=(Fi+L)/2and G~ := (F,—L)/2.
From the parallelogram identity we conclude

1Fu s s IILlRs < IFillEs + ILlRs = 201G IIEs + 201G s (3.24)
= 2/|G s + (IPvGIlas + IPwG lIfis) + (1Pye G s + [Py G IlRs) -

In the following, we bound the three terms on the right hand side of (3.24) separately.
Applying (3.20), (3.21) and the fact that || - ||us < || - ||auc We obtain for the first term on the
right hand side of (3.24) that

a 2
21Gfis < $(I1F) — (Fu+ D)llus + |1Fy — Fyllus + [|1Fy — (FY + L°)||us) (3.25)
< 1(26 —00)? < 26,

To bound the second term on the right hand side of (3.24) we note first that, using (2.16),
IPvG™ = PwG lifis = IPvG IIfis + IPWG [Ifis — 21(PvG ™, PwG ) lms

PG~ |Ifis + IPWG [Ifis — 20 % PyG s PwG ™ |lus

> (1-CRm ) (IPvG [Ifis + | PWG IIfis) -

Y

Dividing this inequality by 1 — C ™, which is valid since we assumed that Cy ™ < 1/2, and
estimating further gives

IPyGIls + IPW G Ils < %II%G_ ~PwG s
1

(3.26)

= — LS IPyGT = PpiGlis < 1Py G [Ifis + IPwe G |[fis) -

2 (
c1—c¢C — Cc1—c¢C
1-Cy 2 1-Cy %

i.e., it remains to establish a bound for the third term on the right hand side of (3.24).
Using the isometry property of T, on HS(L?(S')) and the estimates || - |us < || - [lnue
and || - [lgs < || - [|prxer it follows for A > 1/4/2N + 1 that

1Py G Ilfs + IPwe G llfis < (1P G s + 1Py G [lmis)?

< (2N + 1) (UA(Pye G, Py G))°. (3.27)

Since (Fl,PVval L) is feasible for (3.22) by (3.20), we conclude using (3.20) once more that
U\(F, —Fy,L—1L) = U,\(F’,L°% < UA(F1, Py L) < WA(F1, L) + . (3.28)

Next we use (3.11) with G = é*, which is valid since we assumed the assumptions of Proposi-
tion 3.1 to be satisfied, and recall that A < 1/2 to conclude that

UA(Fr =G L+ G) = 6a(F, L) = 5 (AITePyrGllpo + 31w G e
> %\I//\(PvLé_,PwLé_).
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Consequently, we obtain by rewriting G~ = F; — Gt = —L + G that
UA(PyeG™ Py G7) < 4(UA(FL — G, L+ G™) — (1, L))
< 4(UA(Fy = Fy, L — L) = (UA(F1, L)+ 8) + (UA(GF,GT) + &) (3:29)
4(WUA(GH,GF) + o),

IN

where we have used (3.28) in the last step. Now we insert (3.29) into (3.27) to deduce

1Py G Ils+Pw G [[hs < 162N +1)(Ux(GF,GT) + d0)
< 42N +1)(UA(FY — (FY + L°), F) — (F{ + L%)) (3.30)
FUAFY — (F + L), FO — (Fy + L)) + 260)°.

Since || - [laue < V2N +1]| - [Jus and [|Te, () |loxer < (2N +1)| - ||us on V3§, we can use (3.20)
and (3.21) to obtain

UN(F) = (F + L°),F) — (F) + L°)) < 2(V2N + 1+ A2N +1))(5 — &) -
Similarly,
UN(F) — (FL+ L), F) — (Fy+ L)) < (14 ).

Substituting the last two inequalities into (3.30) gives

1Py G [Ifis + 1Py G [l
< 42N +1)(2(V2N + 1+ A@2N +1))5 — (2V2N + 1+ A(4N + 1) — 3)60)* (3.31)
< 16(2N + 1) (V2N + 14+ A(2N + 1))°62.

Finally, we insert (3.25), (3.26) and (3.31) into (3.24) to obtain
1Fy = F s > 12— Llfs < (24 (1+2(1 = CR7?)TH1I6(2N + 1) (V2ZN + 1+ A2N +1))%)8%,

which implies (3.23) by our choice of A. O

4 Numerical examples

Now we briefly comment on the numerical implementation of far field operator splitting by
principal component pursuit as discussed in the previous section. Following [43] we consider a
slightly relaxed version of (3.1), in which the inequality constraint is replaced by a penalty term.
Accordingly, we aim to solve

minimize | F — (Fy + L)||fis + # (M Tey Fillocer + [ Zlluce) » (4.1)
F1,L€VN1

where 1 > 0 is a small constant. We use a proximal gradient approach as proposed in [35, 43|
to approximate the unique solution of (4.1).

In all our numerical examples the contrast function is chosen to be ¢ = xp, — 0.5xp, with
two scatterers D1 C Bp,(c1) and Dy C Bpg,(c2) as shown in Figure 2.1 (left), and we use k = 1
for the wave number. We simulate the associated far field operators F, and Fj, using a Nystrém
method with M = 170 equidistant illumination and observation directions on S' as described
in Example 2.1. Here, the number of sampling points M has been chosen such that all far field
operators in the examples below can be fully resolved.
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Figure 4.1: Left: Relative reconstruction errors for varying number M of discretization points
for A= M~/2 and for optimally chosen A in Example 4.1. Right: Relative reconstruction errors for
fixed M = 170 and varying \. Typically proposed choice A\ = M~/2 ~ 0.077 from literature and opti-
mal choice A ~ (.13 marked by vertical grey lines.

Denoting in the following the numerical solutions of (4.1) by (ﬁl, E), we will evaluate the
relative reconstruction errors

and 8L o ||(Fq_Fq1)_L||HS

1 1Fa — Fiflns 1
HFquHS e ||Fq*Fq1||HS

€rel ‘=

to assess the quality of these numerical solutions. The a priori information ¢; = (—28,—30)" on
the approximate location of the scatterer D; that enters the reconstruction algorithm is marked
by a cross inside D; in Figure 2.1 (left).

We note that the assumptions of Theorem 3.5 are not satisfied for the particular setup
discussed in this section. However, we will see that the splitting algorithm still gives good
reconstructions.

Example 4.1 (Choice of coupling parameter \). In our first example, we study the optimal
choice of the coupling parameter A\ in (4.1) depending on the number of incident and obser-
vation directions M used to approximate the far field operators. To this end we vary M
between M = 130 and M = 350, always using u = 3 x 107*M /X for the second parameter
in (4.1).

In the literature often the value A = M~/2 is used (see, e.g., [7, 44]). This is also the smallest
possible choice of A that is covered by our stability Theorem 3.5. However, since a larger choice
of A promotes a better reconstruction quality for the sparse component Fi, it makes sense to
choose A slightly larger. We have determined the corresponding optimal values for A depending
on M by minimizing the associated relative reconstruction error ! of the sparse component.
The results are shown in Figure 4.1 (left). It turns out that choosing A ~ 2M~/2 always
produces better reconstructions. For all error curves in Figure 4.1 (left) we observe an increase
of the order O(M) with respect to M, as to be expected from (3.23).

Figure 4.1 (right) shows the relative reconstruction errors depending on the coupling pa-
rameter A for fixed number of incident and observation directions M = 170. The literature
value A = M~Y2 ~ 0.0767 as well as our optimized choice A\ ~ 0.1258 are marked by vertical
gray lines. O

Example 4.2 (Varying noise level ). We consider the same setting as in the previous example
with fixed M = 170 and choose accordingly A = 0.13. In this example we study the quality
of our reconstructions when complex valued uniformly distributed relative error is being added
to the simulated far field operators F,. Denoting by d,; € (0,0.1) the relative noise level,
we generate 15 different random noise realizations for each noise level and plot the relative
reconstruction errors of the worst reconstructions in Figure 4.2. We note that larger noise
levels require more regularization, and accordingly the parameter p in (4.1) has been increased
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Figure 4.2: Worst relative reconstruction errors for varying relative noise level d,. after 15 runs in
Example 4.2.
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Figure 4.3: Left: Geometry of two scatterers (red, blue) and a priori information on location ¢; of first
scatterer (black +) for varying distance |¢; — ¢3] in Example 4.3. Right: Relative reconstruction errors
for varying distance |¢; — ¢3| in Example 4.3.

from p =3 x 107*M /X for d,e1 = 0 to = 1.2 x 1073M /X for 8, = 0.1 in these calculations. As
soon as the additive random noise dominates the modeling error, both error curves in Figure 4.2
increase with a rate of order O(dye1) with respect to dyel, as expected from (3.23). O

Example 4.3 (Varying distance between and diameter of scatterers). In our third example, we
study the dependence of the performance of our method depending on the distance |¢; — ¢2f
between the two components of the scatterer and on the size parameters R; and Rs. In our
stability estimates (3.23) these dependencies are hidden in the constant C’]CVTCQ (see also the last
estimate at the end of the proof of Theorem 3.5). Accordingly, the accuracy of the numerical
reconstructions should improve with increasing distance and with decreasing radii. Our estimates
also suggest that the relative reconstruction errors should grow faster for increasing Ry than for
increasing Rg. In our numerical tests below, we use M = 170 and choose = 3 x 1074 M/ .

We start by varying the distance |¢; — c2| between the scatterers. To this end we keep the
position ¢ of the nut-shaped scatterer Dy fixed and vary the position ¢; of the kite-shaped
scatterer Di, as shown in Figure 4.3 (left). The resulting relative reconstruction errors with
optimally chosen coupling parameter A\ (see Example 4.1) are shown in Figure 4.3 (right). As
expected, both relative errors decrease with increasing distance |¢; — ¢a.

In order to analyze the quality of our reconstructions depending on the size of the scatterers,
we fix one of the two and vary the size of the other. In both tests, we select the coupling
parameter A optimally (see Example 4.1). We start by varying the size R; of the kite-shaped
scatterer as shown in Figure 4.4 (left), where its instance for Ry = 5 is highlighted. The
associated relative reconstruction errors are plotted in Figure 4.4 (right). For R; > 4 both error
curves increase with increasing Rp, as expected. For R; < 4, the relative error 5361 increases
as Ry decreases. At Ry = 1, the low-rank component L is reconstructed even better than the
sparse component F7. This behavior is probably due to the fact that for Ry very small g9 scatters
much stronger than ¢;. Finally, we vary the size Ro of the nut-shaped scatterer as shown in
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Figure 4.4: Left: Geometry of two scatterers (red, blue) and a priori information on location ¢; of
first scatterer (black +) for varying size R; of kite-shaped scatterer in Example 4.3. Right: Relative
reconstruction errors for varying size R; in Example 4.3.
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Figure 4.5: Left: Geometry of two scatterers (red, blue) and a priori information on location ¢; of
first scatterer (black +) for varying size Ro of nut-shaped scatterer in Example 4.3. Right: Relative
reconstruction errors for varying size Ry in Example 4.3.

Figure 4.5 (left). Again the instance corresponding to Re = 5 is highlighted. The associated
relative reconstruction errors can be found in Figure 4.4 (right). As expected, we observe el |
to grow with Ro. It can also be seen, that increasing R; has a stronger effect on the relative

reconstruction error than increasing Ra. O

Conclusions

We have developed a new method to separate or split off the scattering data associated to a
single scatterer that is part of an ensemble of well-separated scatterers from the scattering data
for the whole ensemble. This question arises for instance when one wishes to recover properties
of scatterers in a certain focus area while not being interested in scatterers outside this region
so much. Using sparsity and low-rank properties of far field operators associated to compactly
supported scatterers, we have shown that a convex program called principle component pursuit
can be utilized to approximate solutions to this inverse problem. Our main theoretical result
is a stability estimate for this method taking into account modeling errors and data noise. We
have put particular emphasis on expressing the prerequisites of this theorem and the associated
stability constants solely in terms of geometric properties of the scattering ensemble and the wave
length. Although the assumptions of our theoretical results are quite restrictive, the numerical
results confirm that the reconstruction algorithm also works well if these assumptions are not
fully met.
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